Journal of Controlled Release xxx (2013) xxx-xxx

Contents lists available at ScienceDirect

Journal of Controlled Release

journal homepage: www.elsevier.com/locate/jconrel

Review

Factors controlling the pharmacokinetics, biodistribution and

intratumoral penetration of nanoparticles

وم Mark J. Ernsting ^{a,b}, Mami Murakami ^a, Aniruddha Roy ^a, Shyh-Dar Li ^{a,c,d,*}

- a Drug Delivery and Formulation, Drug Discovery Program, Ontario Institute for Cancer Research, 101 College Street, Suite 800, Toronto, Ontario M5G 0A3, Canada
- ^b Ryerson University, Toronto, Ontario M5B 1Z2, Canada
- ^c Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- ^d The Techna Institute, University Health Network, Toronto, Ontario M5G 1P5, Canada

ARTICLE INFO

Article history:

10

16

41 40

43

45 46

12 Received 7 August 2013

3 Accepted 15 September 2013

4 Available online xxxx

Keywords:

9 Nanoparticle

20 Pharmacokinetics

21 Biodistribution22 Tumor microenvironment

23 Intratumoral penetration

ABSTRACT

Nanoparticle drug delivery to the tumor is impacted by multiple factors: nanoparticles must evade clearance by 24 renal filtration and the reticuloendothelial system, extravasate through the enlarged endothelial gaps in tumors, 25 penetrate through dense stroma in the tumor microenvironment to reach the tumor cells, remain in the tumor tis- 26 sue for a prolonged period of time, and finally release the active agent to induce pharmacological effect. The phys- 27 icochemical properties of nanoparticles such as size, shape, surface charge, surface chemistry (PEGylation, ligand 28 conjugation) and composition affect the pharmacokinetics, biodistribution, intratumoral penetration and tumor 29 bioavailability. On the other hand, tumor biology (blood flow, perfusion, permeability, interstitial fluid pressure 30 and stroma content) and patient characteristics (age, gender, tumor type, tumor location, body composition and 31 prior treatments) also have impact on drug delivery by nanoparticles. It is now believed that both nanoparticles and the tumor microenvironment have to be optimized or adjusted for optimal delivery. This review provides a 33 comprehensive summary of how these nanoparticle and biological factors impact nanoparticle delivery to tumors, 34 with discussion on how the tumor microenvironment can be adjusted and how patients can be stratified by imaging methods to receive the maximal benefit of nanomedicine. Perspectives and future directions are also provided. 36 © 2013 Published by Elsevier B.V. 37

Contents

1.	INTroduction	U
2.	Blood circulation and RES interaction	0
	2.1. Strategies to reduce RES interactions	
	2.1.1. Surface decoration	
	2.1.2. Size and morphology	0
	2.1.3. Composition	0
	2.1.4. Zeta potential	0
	2.2. RES activity and personalized dose adjustment	0
3.	Nanoparticle extravasation and retention in tumors	
	3.1. Tumor vascular permeability and nanoparticle extravasation	0
	3.2. Strategies to enhance the tumor extravasation of nanoparticles	0
	3.2.1. Reduce particle size	0
	3.2.2. Tumor blood vessel modulating treatments	
	3.3. Factors affecting tumor retention of nanoparticles	0
4.	Tumor penetration of nanoparticles and drug release	0
	4.1. Tumor physiological factors that impact nanoparticle penetration	0
	4.1.1. Abnormal and heterogeneous vasculature	
	4.1.2. Interstitial fluid pressure (IFP)	0
	4.1.3. Stromal density	0
	4.1.4 Tumor associated macrophage (TAM)	O

0168-3659/\$ – see front matter © 2013 Published by Elsevier B.V. http://dx.doi.org/10.1016/j.jconrel.2013.09.013

Please cite this article as: M.J. Ernsting, et al., Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles, J. Control. Release (2013), http://dx.doi.org/10.1016/j.jconrel.2013.09.013

^{*} Corresponding author at: 101 College St, MaRS Centre South Tower, Suite 800, Toronto, Ontario M5G 0A3, Canada. Tel.: +1 647 260 7994. E-mail address: sli@oicr.on.ca (S.-D. Li).

ARTICLE IN PRESS

M.I. Ernsting et al. / Journal of Controlled Release xxx (2013) xxx-xxx

4.2.	Nanoparticle properties that impact the tumor penetration	(
	4.2.1. Size	(
	4.2.2. Zeta potential	(
	4.2.3. Targeting ligands	(
4.3.	Approaches to modulate tumor penetration of therapeutic agents	(
	4.3.1. IFP reduction	(
	4.3.2. Stromal depletion	(
4.4.	Drug release from nanoparticles	(
4.5.	Factors impacting cellular internalization of nanoparticles and the drug release	(
	4.5.1. Mechanisms of cellular internalization of nanoparticles	(
	4.5.2. Size	(
	4.5.3. Shape	(
	4.5.4. PEGylation	(
	4.5.5. Zeta potential	(
	4.5.6. Targeting ligands	(
	4.5.7. TAM content and drug release	(
Conclu	ion and perspectives	(
Acknowled	ment	(
References		(

1. Introduction

83

85

86

87

88 89

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

113

114

115

116

117

118

119

120

121

122

123

Nanomedicine therapies are broadly defined as active pharmaceutical ingredients formulated in delivery vehicles exhibiting an average size between 10 and 200 nm, and these encompass liposomes, micelles, polymeric nanoparticles, dendrimers, and macromolecules. Properly formulated nanoparticles evade the 5 nm renal filtration cutoff [1-3] and exhibit prolonged blood circulation, giving these particles an increased opportunity to interact with tumor tissues. Unlike normal blood vessels which feature a tightly sealed endothelium, tumor vasculature tends to be abnormally permeable to macromolecules and nanoparticles, and furthermore, lymphatic drainage is generally impaired in tumors: as a result of these pathological features, nanoparticles selectively accumulate in this biological cul-de-sac. On the other hand, low molecular weight drugs can non-selectively diffuse through the endothelial layer of normal tissues, inducing significant off-target toxicity at therapeutic doses. The enhanced permeability and retention (EPR) effect is the central hypothesis and science of nanomedicine, and tumors that present with high permeability are good candidates for this class of therapy.

Nanoparticles display distinctive pharmacokinetics (PK) and biodistribution (BD) compared to small molecules, and the altered *in vivo* biofate in turn alters the toxicity and efficacy profile of each drug. There are three major phases in nanoparticle drug delivery (Fig. 1): (1) systemic circulation and reticuloendothelial system (RES) interaction, (2) extravasation and tumor penetration, and lastly, (3) interaction with the target cells. This review focuses on the effect of nanoparticle composition and physicochemical properties on the interactions with the biological systems in these three phases, and how those interactions affect nanoparticle biofate.

2. Blood circulation and RES interaction

The first phase of delivery involves the systemic circulation and interaction with the RES, a global system of macrophages in the liver, spleen, and bone marrow, but with respect to nanoparticle clearance, the liver and spleen are the most active. Macrophages are phagocytic cells, and will engulf particles bearing recognized opsonins (serum proteins) that have adsorbed to nanoparticles [4–6]. For example, Nagayama et al. [7] demonstrated that the increased amount of complement protein C3 and immunoglobulin G (IgG) adsorbed onto the 50-nm polystyrene nanoparticles in the serum was directly reflected in the increased rate of uptake of the nanoparticles by Kupffer cells. Factors affecting opsonization and the RES interaction include PEGylation, size, composition, zeta potential, and shape of nanoparticles. Interaction of

nanoparticles with the RES is a significant determinant of blood circulation time and rates of clearance. Nanoparticles with a decreased blood circulation time usually display reduced tumor uptake and efficacy.

128

129

2.1. Strategies to reduce RES interactions

2.1.1. Surface decoration

The most widely used surface decoration technique is introduction of 130 polyethylene glycol (PEG), which is a hydrophilic polymer, to the surface 131 of nanoparticles to reduce serum protein binding through a process of 132 steric hindrance. PEG has been deployed in various types of nanoparticles, 133 including liposomes, polymeric nanoparticles, and hybrid nanoparticles 134 [8]. Sadzuko et al. [9] reported that PEGylation led to a 3-fold reduction 135 in RES uptake, a 6-fold higher plasma area under the curve (AUC), and a 136 3-fold increased tumor uptake of a liposomal drug, leading to enhanced 137 antitumor efficacy. Similar results have been reported by others with different types of nanoparticles [10-12]. PEG creates a border around 139 nanoparticles and provides a nonspecific steric hindrance barrier 140 preventing access of proteins [13,14]. The molecular weight (MW) of 141 PEG and the amount used has an influence on performance. Fang et al. 142 [15] studied protein adsorption on 100–200 nm PEGylated nanoparticles 143 containing a range of PEG MW (2, 5, and 10 kDa), and determined that 144 10 kDa PEG was the most effective. Ernsting et al. [16] prepared 145 PEGylated cellulose drug conjugates which exhibited self-assembly properties dependent on hydrophobic/hydrophilic balance, and for this system 147 a 2 kDa PEG was optimal. Walkey et al. [17] utilized label-free liquid chro- 148 matography tandem mass spectrometry to determine serum protein 149 binding to gold nanoparticles possessing different surface PEG densities. 150 They reported that gold nanoparticles with different PEG densities attract 151 different clusters of serum proteins, and the cluster of proteins binding to 152 low PEG density particles (<0.16 PEG/nm²) facilitated macrophage up- 153 take. On the other hand, the cluster of proteins that bound to high PEG 154 density particles (>0.64 PEG/nm²) did not trigger serum-dependent 155 phagocytosis, and the uptake by macrophage was less efficient (Fig. 2). 156 While PEG reduces RES interactions, PEG also has an impact on particle 157 properties including stability and drug release, and for each composition 158 the MW and wt.% of PEG have to be experimentally optimized. This is a 159 well-known consideration in liposomal formulation: DSPE-PEG₂₀₀₀ is a 160 common component of PEGylated liposomes, but it has detergent proper- 161 ties, and will destabilize liposomes when exceeding 8 mol% [18].

Despite the benefits that PEG confers, PEGylation is suspected to 163 induce immune responses and hypersensitivity, especially when an 164 immunostimulatory agent is included such as siRNA and pDNA 165 [19–21]. Ishida et al. [22] and Judge et al. [23] demonstrated that the 166

Please cite this article as: M.J. Ernsting, et al., Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles, J. Control. Release (2013), http://dx.doi.org/10.1016/j.jconrel.2013.09.013

Download English Version:

https://daneshyari.com/en/article/10612772

Download Persian Version:

https://daneshyari.com/article/10612772

<u>Daneshyari.com</u>