

Available online at www.sciencedirect.com

SYNTHETIC METALS

Synthetic Metals 150 (2005) 57-61

www.elsevier.com/locate/synmet

Strong antiferromagnetic exchange interactions in quasi-one-dimensional (quasi-1D) compounds based on [Pd(mnt)₂]⁻ anions: Crystal structures, magnetic properties, and spin dimer analyses

X.M. Ren, T. Akutagawa, S. Nishihara, T. Nakamura*

Research Institute for Electronic Science, Hokkaido University, Sapporo 060-0812, Japan

Received 30 August 2004; received in revised form 25 November 2004; accepted 12 January 2005 Available online 4 March 2005

Abstract

Four ion-pair compounds that are based on the $[Pd(mnt)_2]^-$ anion were synthesized and structurally characterized. Crystal structure determinations revealed that, in all four cases, the anions and cations stack as segregated columns, and that adjacent $[Pd(mnt)_2]^-$ anions exhibit a strong tendency of dimerization within an anionic column. Values of $\chi_m(T)$ in 2–350 K indicated that these compounds are nearly diamagnetic. Results of the spin dimer analyses for the magnetic exchange interactions between the nearest-neighbor spins qualitatively illustrated the magnetic behaviors of these compounds. © 2005 Elsevier B.V. All rights reserved.

Keywords: Bis(maleonitriledithiolato)palladium compound; Crystal structure; Magnetic property; Molecular orbital calculation and analysis

1. Introduction

Significant amounts of research have been directed towards the study of the magnetism and conductivity characteristics of $[M(mnt)_2]^ (M=Ni, Pd, or Pt ions; mnt^2-=$ maleonitriledithiolate) compounds [1-4]. Recently, using benzylpyridinium derivatives $([RBzPy]^+)$ as the counter-cation of $[M(mnt)_2]^-$ (M=Ni or Pt), a series of ion-pair compounds that show segregated columnar stacks of cations and anions have been prepared [5]. The quasi-one-dimensional (quasi-1D) magnetic nature of these compounds was attributed to intermolecular π -orbital interactions within the anionic columns. Furthermore, for some compounds, spin-Peierls-like phase transition was observed [5]. Herein, we describe syntheses, crystal structures, magnetic properties, and molecular orbital calculations for $[1-(4'-R-benzyl)pyridinium][Pd(mnt)_2]$ $(R=Cl, Br, I, or NO_2)$.

2. Experiment

1-(4'-R-benzyl)pyridinium bromide ([RBzPy]Br) and disodium maleonitriledithiolate (Na₂mnt) were synthesized following published procedures [6]. The four types of $[RBzPy][Pd(mnt)_2]$, in which R = Cl(1), Br(2), I(3), and NO₂ (4), were prepared using similar procedures as in the syntheses of [RBzPy][Ni(mnt)₂] and [RBzPy][Pt(mnt)₂]. Elemental analysis: Calcd. for $C_{20}H_{11}N_5ClS_4Pd(1)$: C, 40.6%; N, 11.8%; H, 1.87%. Found: C, 40.4%; N, 11.9%; H, 1.97%. $\nu_{C \equiv N}$ (KBr disc): 2207(s), 2218(sh) cm⁻¹. Calcd. for C₂₀H₁₁N₅BrS₄Pd (2): C, 37.8%; N, 11.0%; H, 1.74%. Found: C, 37.8%; N, 11.1%; H, 1.81%. $\nu_{C \equiv N}$ (KBr disc): 2205(s), 2219(sh) cm $^{-1}$. Calcd. for $C_{20}H_{11}N_5IS_4Pd$ (3): C, 35.2%; N, 10.3%; H, 1.62%. Found: C, 35.1%; N, 10.1%; H, 1.75%. $\nu_{C=N}$ (KBr disc): 2207(s), 2216(sh) cm⁻¹. Calcd. for C₂₀H₁₁N₆O2S₄Pd (4): C, 39.9%; N, 14.0%; H, 1.84%. Found: C, 39.1%; N, 13.4%; H, 2.01%. $\nu_{C=N}$ (KBr disc): 2206(s), 2220(sh) cm⁻¹.

The single crystals suitable for X-ray analysis were obtained by dispersing Et_2O into the MeCN solu-

^{*} Corresponding author. Tel.: +81 11 706 2849; fax: +81 11 706 4972. E-mail address: tnaka@imd.es.hokudai.ac.jp (T. Nakamura).

Table 1
Crystal and structural refinement data for 1–4

	1	2	3	4
Chemical formula	C ₂₀ H ₁₁ ClN ₅ S ₄ Pd	C ₂₀ H ₁₁ BrN ₅ S ₄ Pd	C ₂₀ H ₁₁ IN ₅ S ₄ Pd	C ₂₀ H ₁₁ N ₆ O ₂ S ₄ Pd
Formula weight	591.43	635.89	682.88	601.99
Temperature (K)	298(2)	298(2)	298(2)	298(2)
Wavelength (Å)	0.71075	0.71075	0.71075	0.71075
Space group	$P2_1/n$ (#14)	$P2_1/n$ (#14)	P-1 (#2)	$P2_1/c$ (#14)
a (Å)	7.2672(15)	7.3390(15)	7.5762(15)	7.1392(14)
b (Å)	26.120(5)	26.225(5)	12.354(3)	26.440(5)
c (Å)	12.729(3)	12.634(3)	14.253(3)	12.711(3)
α (°)	90	90	111.64(3)	90
β (°)	105.63(3)	105.26(3)	90.14(3)	105.88(3)
γ (°)	90	90	103.07(3)	90
$V(\mathring{A}^3)$, Z	2326.9(8), 4	2345.9(8), 4	1202.5(4), 2	2307.9(8), 4
Density (calc) (g/cm ³)	1.688	1.800	1.886	1.733
Abs coeff. (mm ⁻¹)	1.289	2.868	2.421	1.197
F(000)	1172.00	1244.00	658.00	1196.00
θ range for data collection	3.01–27.48	3.02-27.48	3.04–25	3.06–27.48
Index ranges	$-9 \le h \le 8$	$-9 \le h \le 9$	$-9 \le h \le 8$	$-9 \le h \le 9$
Ç	$-33 \le k \le 33$	$-34 \le k \le 34$	$-14 \le k \le 14$	$-34 \le k \le 34$
	$-16 \le l \le 16$	$-16 \le l \le 16$	$-16 \le l \le 16$	$-16 \le l \le 16$
Reflns collected	5289	5374	4050	5258
Independent refins	$3584 (R_{\rm int} = 0.0299)$	$3281 (R_{\rm int} = 0.0480)$	$2607 (R_{\rm int} = 0.0306)$	$3662 (R_{\rm int} = 0.0393)$
Refinement method on F^2	Full-matrix least-squares	2224/0/202	0.505/0/0.50	2 < < 2 /0 /2 0 0
Data/restraints/params	3584/0/280	3281/0/280	2607/0/269	3662/0/298
Goodness-of-fit on F^2	0.877	1.021	1.305	0.938
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0268$	$R_1 = 0.0470$	$R_1 = 0.0830$	$R_1 = 0.0257$
	$wR_2 = 0.0524$	$wR_2 = 0.1329$	$wR_2 = 0.2760$	$wR_2 = 0.0547$
R indices (all data)	$R_1 = 0.0459$	$R_1 = 0.0768$	$R_1 = 0.1120$	$R_1 = 0.0445$
	$wR_2 = 0.0559$	$wR_2 = 0.1409$	$wR_2 = 0.3069$	$wR_2 = 0.0687$
Residual (eÅ ⁻³)	0.534 and -0.389	2.017 and -1.896	3.622 and -3.041	0.400 and -0.324

tion of the corresponding [RBzPy][Pd(mnt) $_2$] for ~ 1 week.

2.1. X-ray crystallography

Crystallographic details on the data collection and structure refinement are summarized in Table 1. Diffraction data were collected at 293 K on a Rigaku R-AXIS RAPID IP area detector. Structures were solved by direct methods using SHELX-97 and refined by the full-matrix least-squares method on F^2 using SHELXL-97 [7]. All non-hydrogen atoms were treated anisotropically. The hydrogen atoms were introduced at calculated positions.

2.2. Magnetic susceptibility measurements and molecular orbital calculations

Magnetic susceptibility data on powder-sample were collected over the temperature range of 2–350 K using a Quantum Design MPMS XL superconducting quantum interference device (SQUID) magnetometer. Spin dimer analyses for the neighboring [Pd(mnt)₂]⁻ anions were performed within the tight-binding approximation using extended Hückel molecular orbital calculations [8]. The HOMO of

[Pd(mnt)₂]⁻ anions were used as the basis functions. Published values of the extended Hückel parameters for Slater-type atomic orbitals were utilized [9].

3. Results and discussion

3.1. Descriptions of the crystal structures

The Oka Ridge Thermal Ellipsoid Plot (ORTEP) view of **1** in an asymmetric unit is shown in Fig. 1. The Pd ion in

Table 2 Intermolecular separations and the inter-plane distances

	1	2	3	4
$\overline{d_1}$	3.4088(7)	3.4183(9)	3.4555(22)	3.3983(9)
d_2	4.2234(9)	4.2972(11)	4.5422(22)	4.0889(10)
d_3	3.3909(10)	3.3920(20)	3.4192(52)	3.3733(17)
d_4	4.2054(10)	4.2773(21)	4.5079(51)	4.0885(18)
d_5	3.595	3.612	3.705	3.540
d_6	3.418	3.428	3.459	3.301
d_7	3.545	3.506	3.722	3.367
d_8	3.513	3.480	3.681	3.452
d_9	3.889	3.946	4.008	3.995
d_{10}	4.491	4.631	4.884	4.542

Download English Version:

https://daneshyari.com/en/article/10618673

Download Persian Version:

https://daneshyari.com/article/10618673

Daneshyari.com