

Available online at www.sciencedirect.com

Synthetic Metals 155 (2005) 635–638

www.elsevier.com/locate/synmet

Enhancement of the photocurrent generation in dye-sensitized solar cell based on electrospun TiO₂ electrode by surface treatment^{$\dot{\alpha}$}

Mi Yeon Song^a, Do Kyun Kim^b, Seong Mu Jo^b, Dong Young Kim^{a,*}

^a *Optoelectronic Materials Research Center, Korea Institute of Science and Technology, Seoul 130-650, Republic of Korea* ^b *Polymer Hybrid Research Center, Korea Institute of Science and Technology, Seoul 130-650, Republic of Korea*

> Received 28 June 2004; received in revised form 2 February 2005; accepted 15 August 2005 Available online 7 November 2005

Abstract

We investigated the dye-sensitized solar cell (DSSC) using TiO₂ electrode electrospun directly onto the substrate from a mixture of titanium propoxide and poly(vinyl acetate) in dimethyl formamide (DMF). The electrospun electrode could be penetrated efficiently by a viscous polymer gel electrolyte because of porous structure. The energy conversion efficiency obtained from the DSSC with poly(vinylidenefluoride-*co*hexafluoropropylene) (PVDF-HFP) gel electrolyte was over 90% of that obtained from liquid electrolyte. In order to improve the short-circuit photocurrent, we treated the electrospun $TiO₂$ electrode with $TiCl₄$ aqueous solution. The rutile crystal was grown epitaxially on anatase $TiO₂$ fibers. An additional TiO₂ layer increased the volume fraction of active materials resulting in an increase of sensitizer adsorption. The incident photon-to-current conversion efficiency (IPCE) of TiCl₄-treated electrode was higher than the untreated. In particular, the contribution from TiO₂ increases after the surface treatment due to an increase in packing density. The photocurrent of the DSSC with electrospun $TiO₂$ electrode was enhanced more than 30% after TiCl₄ treatment.

© 2005 Elsevier B.V. All rights reserved.

Keywords: Electrospinning; Titanium dioxide; Nanofibers; Dye-sensitized solar cell; Gel electrolyte

1. Introduction

The electrochemical photovoltaics have been studied using wide-bandgap semiconductors, such as $TiO₂$, ZnO , $Nb₂O₅$, $SnO₂$, etc. [\[1–3\].](#page--1-0) In 1991, Grätzel and co-worker [\[4\]](#page--1-0) reported the dye-sensitized solar cell (DSSC) using nanocrystalline $TiO₂$ particles which increased the surface area several hundred times compared to those in compact semiconductor and electrolyte interfaces. The energy conversion efficiency of DSSC reaches over 10%, which is comparable to that of the silicon based solar cell [\[5\]. I](#page--1-0)n organic/inorganic hybrid solar cells, nanorods[\[6\]](#page--1-0) and nanotubes [\[7\]](#page--1-0) have been investigated as new electrode materials with a higher degree of order than the random assembly of nanoparticles. Recently, the electrospinning technique has been developed, which provides a simple, cost-effective approach for

producing nanofibers within a broad range of diameters, from tens of nanometers to a few micrometers according to the selection of the processing parameters [\[8–10\].](#page--1-0) We demonstrated the porous electrode structure based on electrospun TiO₂ nanofibers, in which the energy conversion efficiency, the photocurrent generation with polymer gel electrolyte, was over 90% of the performance in DSSC with liquid electrolyte [\[11\]. H](#page--1-0)owever, the volume content of $TiO₂$ in nanofiber web electrode is still low to maximize the photocurrent generation. In this study, the electrospun $TiO₂$ nanofibers are treated chemically to increase the $TiO₂$ volume content by using epitaxial growth of $TiO₂$ rutile crystal from aqueous TiCl4 solution. The additional rutile layer modified the photocurrent generation of DSSC based on electrospun $TiO₂$ electrode. The energy conversion efficiency increases 30% after post-treatment.

2. Experimental

 $TiO₂$ fibers were electrospun directly onto a $SnO₂:F-coated$ glass substrate (FTO, $10 \text{ cm} \times 10 \text{ cm}$, TEC-15, Pilkingotn) from mixture containing 3g poly(vinyl acetate) (PVAc,

 \overrightarrow{x} Based on presentation at the International Conference on Synthetic Metals, Wollongong, Australia, June 28–July 2, 2004 (ICSM 2004).

[∗] Corresponding author. Tel.: +82 2 958 5323; fax: +82 2 958 5309. *E-mail address:* dykim@kist.re.kr (D.Y. Kim).

^{0379-6779/\$ –} see front matter © 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.synthmet.2005.08.018

 $M_W = 850,000 \text{ g/mol}$, 6 g titanium(IV) propoxide (TiP) (Aldrich) and 2.4 g of acetic acid as a catalyst for sol–gel reaction in dimethyl formamide (DMF) (37.5 mL). In a typical electrospinning, the precursor solution was loaded into a syringe connected to a high-voltage power supply (Bertan Model 230). An electric field of 15 kV was applied between a metal orifice and the FTO substrate at a distance of 10 cm. The spinning rate was controlled by a syringe pump (KD Scientific Model 220) at 60 μ L/min. Electrospun TiO₂ web was treated with tetrahydrofuran (THF) vapor in a closed chamber for 1 h prior to calcination. The calcination was carried out stepwise at each temperature (duration in min) as: $100\,^{\circ}$ C (15); $150\,^{\circ}$ C (15); $325\,^{\circ}$ C (5); $450\,^{\circ}$ C (30 min) in air.

To grow TiO₂ rutile crystal epitaxially, TiO₂ web plate was immersed into a 0.1 M titanium tetrachloride (TiCl₄) (Aldrich) aqueous solution in a closed chamber for 24 h. The 0.1 M TiCl4 aqueous solution was prepared in the following manner. Firstly, 2 M concentrated TiCl₄ solution was prepared by adding directly titanium tetrachloride into a flask containing ice and then, the solution was further diluted to 0.1 M.

The $TiO₂$ web electrode was immersed overnight in an ethanolic solution containing 3×10^{-4} M of ruthenium dye, $RuL_2(NCS)_2$ ($L = 2,2'$ -bipyridyl-4,4'-dicarboxylic acid) (N3, Solaronix). The electrode was rinsed and dried after its removal from the dye solution. The liquid electrolyte we used consisted of 0.6 M 1-hexyl-2,3-dimethyl-imidazolium iodide (C6DMIm), $0.05 M$ iodine (I_2) , $0.1 M$ lithium iodide (LiI) and $0.5 M$ 4-*tert*butylpyridine dissolved in 3-methoxyacetonitrile. Pt-sputtered SnO2:F glass was used as the counter electrode. A dye-sensitized solar cell containing a polymer gel electrolyte was characterized; this electrolyte consisted of poly(vinylidenefluoride*co*-hexafluoropropylene) (PVDF-HFP) (Kynar 2801, 0.13 g), C6DMIm (0.13 g) and I₂ (0.008 g) in propylene carbonate (PC) (0.75 g) and ethylene carbonate (EC) (0.5 g) . The typical active area of DSSC was 0.16 cm2. The photocurrent–voltage characteristics were measured with Keithley 2400 SMU under the global AM1.5, 100 mW/cm^2 irradiation. The incident photonto-current conversion efficiency (IPCE) was measured using a 350 W Xe lamp light source with a motorized monochromator. Incident light intensity was calibrated using a Newport 818UV photodiode detector. The electrochemical impedance spectra (EIS) were obtained by Solatron FRA 1260 with EG&G PARC Potentiostat/Galvanostat Model 273 with an ac amplitude of 10 mV at the open-circuit voltage (V_{oc}) under illumination.

3. Results and discussion

Nanoporous electrospun $TiO₂$ electrodes improve the penetration of polymer gel electrolyte effectively. Electrospun $TiO₂$ web for DSSC in this work shows the well-organized porous electrode structure as shown in Fig. 1a after calcination at 450 ◦C in air removing PVAc from the as-spun fibers. Several studies have previously reported that treatment of nanocrystalline $TiO₂$ with $TiCl₄$ solution. Results in a significant improvement in device performance [\[12\].](#page--1-0) The nanocrystalline $TiO₂$ electrode with $TiCl₄$ treatment increased the necking between the nanoparticles of the film, thus, facilitating the

Fig. 1. Scanning electron microscopy (SEM) images of electrospun TiO₂ nanofiber electrodes after TiCl₄ aqueous solution treatment for 24 h at different temperatures: (a) without treatment; (b) 20° C; (c) 40° C; (d) 60° C.

Download English Version:

<https://daneshyari.com/en/article/10619074>

Download Persian Version:

<https://daneshyari.com/article/10619074>

[Daneshyari.com](https://daneshyari.com)