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Abstract

The moment of inertia tensor is a quantity that characterizes the morphology of aggregates of particles. The deviatoric components
indicate the anisotropy of the aggregate, and its compactness is described by the isotropic component, i.e. the second moment of inertia,
which is related to the radius of gyration. The equation of motion of the moment of inertia tensor is proposed for the sintering and coa-
lescence of crystalline particles by bulk diffusion and surface diffusion. Simulations of the evolution of aggregates of particles (linear
chains, rings and branched chains) show that the aggregates become more compact and more isotropic structures, driven by the surface
energy tensor or the surface force density. The tensor virial equation for diffusion is applicable also to evolution of pores, precipitates and
inclusions embedded in a surrounding matrix.
� 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The tensor virial equation is the equation of motion of
the moment of inertia tensor of an aggregate of particles
[1]. It is obtained by first multiplying the force by position
and then integrating the result over the volume of the sys-
tem. While the usual scalar virial theorem applies to isotro-
pic systems, the diagonal terms have application to
anisotropic systems. The tensor virial equation is of interest
in a wide variety of problems involving anisotropic isolated
systems [2], for example, an aggregate of particles evolving
under the action of surface tension. Chandrasekhar [3] and
later Rosenkilde [4] introduced the surface energy tensor
that plays an important role in the dynamics of the
moment of inertia tensor.

The tensor virial method was applied to the spheroidiza-
tion of a single particle in viscous sintering where inertia
forces are negligible [5]. A non-spherical amorphous/glass

particle relaxes to its equilibrium shape by viscous flow dri-
ven by capillarity. In this system the tensor virial equation
gives a relation between the volume integral of the velocity
gradient tensor (strain rate) and the surface energy tensor.
The equation shows that the deformation of an isolated
ellipsoidal particle is driven by the deviatoric component
of the surface energy tensor in viscous sintering.

In the chemical synthesis of powders, coagulation and
sintering result in the aggregation of primary particles.
The morphology evolves from fractal-like open structures
to compact structures by viscous sintering of amorphous
multi-particle aggregates [6–8]. Both the surface area and
the second moment of inertia of aggregates reduce in the
morphological evolution [9,10].

The sintering of an aggregate of crystalline particles
takes place by diffusion at elevated temperatures. It is well
known that the shrinkage is a result of the relative motion
of particles caused by grain boundary diffusion [11,12]. The
thermodynamic driving force for shrinkage is the sintering
force [13,14], and the sintering stress [15] that is expressed
as a function of the surface energy tensor [16]. At the same
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time, each particle changes its shape by bulk diffusion
[17,18], surface diffusion [19–21] and evaporation–conden-
sation [22].

Neck formation between primary particles converts the
agglomerates to aggregates. Sintering and coalescence
make aggregates become more compact structures, even
in the absence of grain boundary diffusion [14,23]. When
the surface energy is isotropic, the bulk diffusion and sur-
face diffusion make aggregates of crystalline particles
become more isotropic structures. While the densification
of bulk material is measured by the bulk density, the com-
pactness of a multi-particle aggregate is defined by the sec-
ond moment of inertia (radius of gyration) [10,24,25]. The
anisotropy of the aggregate is evaluated by the deviatoric
components of the moment of inertia tensor.

The objective of this paper is to show the equation of
motion of the moment of inertia tensor for microstructural
evolution. The structure of the paper is as follows. In Sec-
tion 2, we consider tensor virial equations for bulk diffu-
sion and surface diffusion. The anisotropic deformation
by bulk diffusion is expressed as a response to the deviator-
ic components of the surface energy tensor. For sintering
by surface diffusion, the thermodynamic driving force is
identified in the equation of motion of the moment of iner-
tia. Brakke’s Surface Evolver program [26] is used as a tool
to simulate the evolution of aggregates of particles (linear
chains, rings and branched chains) by surface diffusion in
Section 3. Although we treat only isolated aggregates in
the present paper, the tensor virial equation for diffusion
is applicable also to the morphological evolution of pores,
cavities, precipitates and inclusions embedded in a sur-
rounding matrix. The moment of inertia tensor will be a
useful quantity to characterize the microstructural evolu-
tion (size, shape, anisotropy and orientation), because it
is experimentally observable through the developments of
three-dimensional imaging techniques: atom probe tomog-
raphy [27], electron microscopy tomography [28], focused
ion beam tomography [29] and X-ray tomography [30].

2. Dynamics of evolving interface

2.1. Bulk diffusion

Microstructural development involves evolving inter-
faces and surfaces. When matter is transferred to/from
the bulk, the normal velocity tn of the surface is propor-
tional to the flux jn normal to the surface:

tn ¼ jnX ð1Þ
where X is the atomic volume. The diffusive flux in the bulk
is proportional to the gradient of a chemical potential l:

j ¼ � DL

kT X
rl ð2Þ

where DL is the diffusion coefficient in the bulk, k is the
Boltzmann constant and T is the absolute temperature.
Mass conservation in the bulk gives

r2l ¼ 0 ð3Þ
Herring [17,31] has shown that the chemical potential

just below the surface is

l� l0 ¼ �csjX ð4Þ
where l0 is the chemical potential under a flat surface and
cs is the surface energy. The curvature j, the sum of the
principal curvatures (note this is twice the traditional defi-
nition of mean curvature), is expressed as the divergence of
the unit (outward) normal vector ni to the surface:

j ¼ �@nk=@xk ð5Þ
The summation convention for repeated indices is

applied throughout this paper. The curvature is defined
positive when the center of curvature is outside of the par-
ticle: it is negative �2/r0 for a spherical particle with radius
r0.

We consider a body of uniform density with volume V

enclosed by a surface A. The body may be a single isolated
particle or an aggregate of particles. The moment of inertia
tensor of the body about the position of the center of mass
is defined by

I ij ¼
Z

V
xixjdV ð6Þ

Thus,

d
dt

I ij ¼
Z

V
ðxitj þ tixjÞdV ð7Þ

where velocity is ti = dxi/dt. We regard the velocity field in-
side the particle as

ti ¼ jiX ð8Þ
From Eqs. (8) and (2), we obtainZ

V
xjtidV ¼ �DL

kT

Z
V

xj
@l
@xi

dV ð9Þ

After integrating by parts, and using the divergence the-
orem, we haveZ

V
xj
@l
@xi

dV ¼
Z

A
xjlnidA� dij

Z
V

ldV ð10Þ

By substituting the boundary condition, Eq. (4), into
Eq. (10), we obtainZ

V
xj
@l
@xi

dV ¼ �X
Z

A
csjnidAþ l0

Z
A

xjnidA� dij

�
Z

V
ldV ð11Þ

From the identityZ
A

xjnidA ¼
Z

V

@xj

@xi
dV ¼ V dij ð12Þ

the tensor virial equation for bulk diffusion takes the form

1

V
d
dt

I ij ¼ �
2DLX

kT
2Sij

V
� dij�p

� �
ð13Þ
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