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Abstract

A general theory of coarsening in a multicomponent alloy is developed, accounting for off-diagonal terms in the diffusion tensor. The
analysis is valid for a non-ideal and non-dilute solution. The asymptotic analysis reveals that the temporal exponents for the average
particle radius, number of particles per volume and both the precipitate and matrix compositions are identical to the binary limit. How-
ever, the amplitudes are different. It is found that the vector representing the matrix supersaturations coincides with the equilibrium tie-
line, but in most alloys this is not the case with the precipitate compositions. It is also shown that considering only a low mobility species
does not yield a description of the temporal evolution of the matrix and precipitate compositions, even though this can be the case for the
average particle size and the number density of precipitates.
� 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Morphological changes due to reduction of the interfa-
cial energy typically occurring at the end of a first-order
transformation are known as Ostwald ripening [1,2] or
coarsening [3,4]. Decreasing the total interfacial energy of
the system leads to an increase in the size scale of the coars-
ening phase. Dissolution of small precipitates concomi-
tantly entails growth of large ones through a diffusive
mass flow from shrinking to growing precipitates. Lifshitz
and Slyozov [3] (LS) and Wagner [4] (LSW) were the first
to describe in a comprehensive manner the coarsening pro-
cess in a dilute binary alloy where the interface composi-
tions are set by the Gibbs–Thompson equation relating
these compositions to the interfacial curvature of the coars-
ening precipitate. In multicomponent alloys, local equilib-
rium at the interface matrix/precipitate alone is no longer
sufficient to determine the interface compositions, and thus
interfacial mass balance conditions must be employed to
describe the growth kinetics of the precipitate. This has

been used by Kuehmann and Voorhees [5] (KV) to describe
Ostwald ripening in a ternary alloy. The present paper
extends their work to higher-order alloy systems, and the
theory includes the off-diagonal diffusion coefficients.

In the past few years, atom probe tomography experi-
ments [6–10] have shown that the mean-field phenomeno-
logical models may not be able to describe the ripening
behavior, particularly for the compositional trajectory of
the coarsening phase, as in the Ni–Cr–Al system, for which
the compositional trajectory of the precipitates was found
not to follow the predictions of the KV theory [7]. The
main limitation is that existing mean-field coarsening mod-
els do not incorporate the complete couplings among the
diffusional fluxes. It is therefore required to develop a gen-
eral theory that takes complete account of the diffusional
flux couplings in concentrated multicomponent alloys.

Bjorklund et al. [10] and Slyozov and Sagalovich [11–13]
extended the LSW theory to incorporate multicomponent
effects, but limited themselves to dilute solutions and did
not allow the precipitate composition to deviate from equi-
librium. The restriction of dilute solution was removed by
Umantsev and Olson [14], but they neglected off-diagonal
diffusivities. Morral and Purdy [15] extended the results
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of Umantsev and Olson to include off-diagonal diffusion
coefficients and predicted the temporal evolution of the
average particle radius. In an elegant treatment, Hoyt
[16] confirmed the result of Morral and Purdy and deter-
mined the temporal evolution of the matrix supersatura-
tions. In each approach, the long-term behavior is found
using either the LS or Marqusee and Ross [17] approach,
which allows the power law time dependence and the distri-
bution function for the particle size of the coarsening phase
to be determined. In contrast, in the KV theory [5], local
equilibrium is employed so that both matrix and precipi-
tate compositions are allowed to depart from their equilib-
rium values as given by the phase diagram.

With the widespread availability of both thermody-
namic and atomic mobility databases, it is now possible
to evaluate all the parameters that control the coarsening
processes in multicomponent technical alloys. The purpose
of this paper is thus to develop a general theory of coarsen-
ing in a multicomponent alloy, removing the restrictions of
these past works and including the effect of the off-diagonal
diffusivities on the overall ripening behavior, with a focus
on the particle composition.

2. Development

A description of the Oswald ripening process is based
upon a continuity equation governing the dynamics of
the precipitate size distribution, a kinetic equation describ-
ing the growth rate of a particle, and a mass conservation
equation. The present authors derive the growth rate of a
particle of a given radius, the mass conservation equations
and the particle composition in a multicomponent alloy.
Following this, a long-term limit analysis is performed.

2.1. The kinetic equation

The growth rate is determined by the diffusion field sur-
rounding the particle within the approximation of local
equilibrium at the particle–matrix interface. Neglecting
the composition dependence of the diffusion coefficient,
solving Laplace’s equation for each component in spherical
coordinates gives

Ci ¼ C1i þ
ðCa

i � C1i ÞR
r

for i ¼ 2 . . . N ð1Þ

where r is the distance from the center of the sphere, N is
the number of components in the alloy, Ci is the mole frac-
tion of component i at r, C1i is the composition at infinity,
and Ca

i is the composition of the a phase at the interface
r = R. The composition at the interface must still be spec-
ified. Assuming that the molar volumes of both phases are
the same, the mass balance at the interface is

Cb
j � Ca

j

� � dR
dt
¼
XN

k¼2

Djk
@Ck

@r

����
r¼R

for j ¼ 2 . . . N ð2Þ

where Djk is the diffusion matrix. Eq. (2) is valid for no flux
into the particle, which is the case for zero diffusivity in the

coarsening phase or if its composition is uniform (infinite
diffusivity). Since the sum of the fluxes is zero, the flux of
component 1 is not independent, and there are only N�1
mass balance equations. Since this is a multicomponent al-
loy, the interfacial compositions appearing on the left-hand
side of Eq. (2) are not given by the phase diagram, but are
determined by the diffusion process. Thus, they are not
known at this point, because the shift from their equilib-
rium values is not only due to capillarity. Using Eq. (1)
in Eq. (2) gives

Cb
j � Ca

j

� � dR
dt
¼
XN

k¼2

Djk

R
C1k � Ca

k

� �
for j ¼ 2 . . . N ð3Þ

During Ostwald ripening, the supersaturation is on the
scale of the shift in local equilibrium concentrations due
to interfacial curvature. Thus, assuming that this shift is
small compared with the equilibrium compositions at a pla-
nar interface, it is possible to replace the difference in inter-
facial compositions given on the left-hand side of Eq. (3)
with the differences in the equilibrium concentrations, spe-

cifically Cb
j � Ca

j ¼ Cb
j � Ca

j , where Cj is the equilibrium

mole fraction of component j in the noted phase at a planar
interface. To determine the conditions under which this

approximation is valid, write Cb
j � Ca

j ¼
Cb

j � Ca
j

� �
1þ eð Þ, where e ¼ ðeCb

j � eCa
j Þ= Cb

j � Ca
j

� �
for

Cb
j – Ca

j . eCj is thus the shift in composition from the equi-

librium value of component j in the noted phase due to
both capillarity and diffusion. Consider the limit where
e� 1 to approximate the difference in compositions as
the difference between the equilibrium compositions of
the phases. As a consequence, the present approximation
requires that the difference in the shift in compositions is
much smaller than the equilibrium difference. In a binary,
for example, when the free energies have same curvature
(i.e., same Hessian), e = 0, so in many cases it can be very
small. Eq. (3) can be therefore be rewritten as

Cb
j � Ca

j

� � dR
dt

¼
XN

k¼2

Djk

R
C1k � Ca

k � Ca
k � Ca

k
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for j ¼ 2 . . . N ð4Þ

Since this is a multicomponent alloy, the compositions of
the a phase at the interface are functions of the diffusion
process and are not given by the usual local equilibrium
condition as in a binary alloy.

To determine the interfacial compositions, local equilib-
rium is assumed at the precipitate interface:

la
i Ca

2;C
a
3; . . . ;Ca

N ; P
a

� �
¼ lb

i Cb
2 ;C

b
3; . . . ;Cb

N ; P
b

� �
for i ¼ 1 . . . N ð5Þ

where li is the chemical potential of component i in the
noted phase. The pressure in the precipitate is not equal
to that in the matrix because of the presence of a non-zero
interfacial energy. Assuming that the interfacial stress and
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