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Abstract

The ability to describe continuous functions on the space of grain boundary parameters is crucial for investigating the functional rela-
tions between the structure and the properties of interfaces, in analogy to the way that continuous distribution functions for orientations
(i.e. texture information) have been used extensively in the optimization of polycrystalline microstructures. Here we develop a rigorous
framework for the description of continuous functions for a subset of the five-parameter grain boundary space, called the “single-axis
grain boundary” space. This space consists of all the boundary plane orientations for misorientations confined to a single axis, and is
relevant to the method of presenting boundary plane statistics in widespread current use. We establish the topological equivalence
between the single-axis grain boundary space and the 3-sphere, which in turn enables the use of hyperspherical harmonics as basis func-
tions to construct continuous functions. These functions enable the representation of statistical distributions and the construction of
functional forms for the structure–property relationships of grain boundaries.
� 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The importance of grain boundaries to the properties of
polycrystalline materials is widely appreciated and is
quickly becoming a cornerstone of the modern materials
design paradigm. There are numerous instances where
grain boundary distributions have been manipulated to
improve the functional and mechanical properties of poly-
crystalline materials [1–8]. While the primary focus of
many of these studies has been to tailor the grain boundary
misorientations, there has been a recent emphasis on
manipulating the grain boundary plane distributions to
obtain better properties [9–13]. These investigations have
benefited greatly from experimental advances in the char-
acterization of grain boundaries in full crystallographic
detail, inclusive of all five macroscopic parameters defining

their geometry [14–19]. The focus for the future of grain
boundary engineering is shifting towards simultaneously
tailoring the five parameters.

One significant obstacle to the investigation of the distri-
butions of the five grain boundary parameters is a lack of
analytical tools to describe the distributions of quantities
involving both the misorientation and the boundary-incli-
nation aspects of grain boundaries. This is because the
five-parameter space is vast and has a complicated topol-
ogy due to various constraints. Owing to symmetries of
the boundary and the crystals abutting it, there are some
duplicate sets of distinct parameters that describe the same
physical boundary, and hence are symmetrically equiva-
lent. Such symmetry constraints can be expressed as equiv-
alence relations, and have been developed in detail
elsewhere [20–22]. It is useful to reiterate these here:
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In these expressions, M denotes the misorientation, ~n
represents the boundary-plane normal vector, and S repre-
sents a point symmetry operation of the crystallographic
point group of order n. The operation g simply outputs
the 3 � 3 matrix equivalent to the rotation operation in
its argument, regardless of the parameterization used. I
represents the identity matrix corresponding to the zero-
misorientation angle. These three equivalence relations
capture some important physical concepts about grain
boundary crystallography: (i) rotating one or both of the
crystals through one of their symmetry operations does
not change the boundary; (ii) the boundary is physically
the same when viewed from either of the two grains at
the boundary (the “grain exchange symmetry”); and (iii)
if there is no misorientation, then there is no unique bound-
ary plane either (the “no-boundary singularity”).

To be able to analyze and exploit the full potential of the
vast amounts of grain boundary data that can now be
obtained from microstructural analysis, it is crucial to
develop tools that help resolve or remove some of the com-
plexities of the grain boundary space. This is largely an
open problem at present [23]. In Ref. [24], we addressed a
simple version of the problem, for one-dimensional bound-
aries between two-dimensional (2-D) crystals. By appropri-
ately transforming the 2-D grain boundary parameters, the
no-boundary singularity was resolved, and by including the
grain exchange symmetry, the space of grain boundary
parameters was shown to be equivalent to the 2-sphere with
appropriate equivalence relations (S2/E). The analysis of
the 2-D grain boundary space emphasized the necessity
of a new parameterization that naturally accounts for the
no-boundary singularity and simplifies the equivalence
relation associated with the grain exchange symmetry.

In this paper, we present developments that resolve a
subset of the five-parameter grain boundary space, the sin-
gle-axis grain boundary (SAGB) space. The SAGB space is
the collection of grain boundary parameters with the mis-
orientation axis confined to lie along any specific crystal
direction ~b (with certain exceptions discussed in Section.
2). This subset of the complete grain boundary space is par-
ticularly relevant because, in the experimental literature,
grain boundary planes are often analyzed for misorienta-
tions along a specific symmetry axis of the crystal [25–
31]. This space also describes the collection of grain bound-
aries of perfect fiber-textured materials, and has direct rel-
evance to, for example, thin films and severely extruded
metals.

2. Mapping the single-axis grain boundary space onto the

hypersphere (S3)

As mentioned previously, the SAGB space is the collec-
tion of all boundary-plane orientations corresponding to
disorientations (i.e. the misorientations lying in the funda-
mental zone of interest) along a fixed crystal direction ~b.
The boundary inclination space is the unit-sphere in three
dimensions (2-sphere, S2) since any normal vector can be

represented as a point on the unit-sphere. Therefore, from
a topological perspective the SAGB space is the product
space [0, xmax] � S2, where xmax is the maximum disorienta-
tion angle along the axis ~b in the fundamental zone. More
precisely, the SAGB space is equivalent to [[0, xmax] � S2]/
E, where E is the equivalence class representing all possible
symmetries of the boundary-plane spaces (i.e. Eq. (1)). In
Ref. [22], we have enumerated these symmetries for disorien-
tations belonging to all the crystallographic point groups.

The first objective of this article is to find a suitable
transformation of the boundary parameters that maps
the SAGB space ([[0, xmax] � S2]/E) to the 3-sphere S3

(with coordinates (x1, x2, x3, x4) in R4 such thatP4
i¼1x2

i ¼ 1) with a convenient set of equivalence relations.
Before considering these mappings and symmetries in
detail, certain conventions are introduced. The symmetries
of the boundary-plane spaces are denoted by G. As
observed in Ref. [22], when x belongs to the interval
(0,xmax), all the boundary-plane spaces S2 exhibit symme-
tries of a single point group (denoted as G1) and we denote
the symmetries of the boundary-plane space when
x = xmax as G2 (where G1 # G2). In this paper, the quater-
nion (q) parameterization is used to represent misorienta-
tions (M) and the grain boundary parameters are hence
denoted as ðq;~nÞ. The mapping of the ðq;~nÞ parameters
to the 3-sphere is obtained through the following steps:

(a) The first equivalence relation that needs to be
addressed is that of the no-boundary singularity Eq.
(1c), which is crucial to the mapping between the
product space [0, xmax] � S2 and S3. According to
this singularity, the space S2 corresponding to the
zero misorientation angle needs to be collapsed to a
single point. This is achieved by the following map-
ping from the ðq;~nÞ to the ðq;~rÞ parameterization:

ðq;~rÞ ¼ Cðq;~nÞ ¼ ðq; ½CðqÞ �~n�Þ ð2Þ
where C(q) is a scalar function defined as:
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G is the point group symmetry of the crystal. q �G is
the left co-set of G in SO(3) and ðq �GÞ0 is the set of
the first quaternion components of the left co-set
q �G. To state it simply, C(q) is a continuous function
on the quaternion space and takes the value zero
when the boundary misorientation is either the iden-
tity or symmetrically equivalent to the identity. In
the case of the grain boundary space of a crystal with
rotational point group symmetry C1, G = C1 = {I},
(q �G)0 = q0 and thus CðqÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

0

p
. In general,

for all crystallographic point groups,
CðqÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

0

p
¼ sin x
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if q belongs to the funda-

mental zone.This mapping results in a parameteriza-
tion ðq;~rÞ that is compatible with the no-boundary
singularity by collapsing all the boundary normal vec-
tors corresponding to the zero misorientation angle to
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