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Abstract

The thermodynamic extremal principle has been used by the authors to treat the evolution of binary and multicomponent systems
under the assumption that all phases are nearly stoichiometric. Up to now only bulk diffusion has been taken into account. The concept
is now extended to combined bulk and grain boundary diffusion possible in each newly formed phase. The grains are approximated by
cylinders allowing interface diffusion along the top and bottom of the grains and grain boundary diffusion along the mantle with different
interface/grain boundary diffusion coefficients. A consistent analysis yields an effective diffusion coefficient taking into account the
combined interface/grain boundary and bulk diffusion of each individual component. The current concept is applied to the Cu–Sn couple
which has been studied by a number of researchers. The results of simulations are compared with experiments at 200 �C on solid systems
reported in the literature as well as with our experiments at 250 �C with liquid Sn.
� 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

If two different alloys come into contact, e.g. by solder-
ing or welding, several intermetallic layers usually form and
grow at elevated temperatures in the region of the original
interface. Interdiffusion is responsible for this phenome-
non, and a significantly pronounced Kirkendall effect can
result in the formation of pores and cracking. In addition,
splitting of the Kirkendall plane has been observed and
studied theoretically in such systems—see e.g. the extensive
work by van Loo and co-workers [1–3], who introduced an
average interdiffusion coefficient for each phase and with
the ratio of the intrinsic diffusion coefficients of the species
in each phase being a fitting constant. This approach can

thus treat the parabolic growth of layers controlled by dif-
fusion as well as the splitting and motion of the Kirkendall
planes. In addition, other theoretical concepts have been
used, such as the quasi-steady-state concept proposed by
Mei et al. [4] for sharp interfaces and by Danielewski
et al. [5] for thick interfaces. A strong impact on modelling
the Kirkendall effect has come also from the multiphase-
field approach—see e.g. Steinbach and coworkers [6] and
the adaption to the current soldering problem proposed
by Park and Arróyave [7,8].

Recently Svoboda et al. (e.g. [9,10]) introduced a
thermodynamic model based on the application of the
thermodynamic extremal principle (TEP), using the fixed
chemical composition of individual stoichiometric phases,
their molar volumes, their molar Gibbs energies and tracer
diffusion coefficients of all components in individual phases
as input parameters. The model simulates the growth of an
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optional number of layers in the system as well as the
motion of the split Kirkendall plane. The model also pro-
poses a realistic image of how the Kirkendall plane splits.
This approach works with standard thermodynamic
quantities such as Gibbs energies, interface energies and
diffusivities, and requires no fitting parameters. It even
allows the tracer diffusion coefficients to be determined
from measurements if these coefficients are unknown. Inco-
herent interfaces are considered to have infinite mobility
and to act as ideal sources and sinks for vacancies (no
dissipation occurs due to interface migration and due to
generation/annihilation of vacancies at the interface). The
bulk of the phases is taken as free of sources and sinks
for vacancies. With respect to bridging of the TEP to the
phase field method, the reader is referred to Ref. [11].

In nearly all the modelling studies, only bulk diffusion is
assumed. A typical example is a solid Cu–solid Sn couple, as
was studied in detail by Paul in his thesis [12] and by Paul
et al. [13,14] and most recently by Kumar et al. [15]. How-
ever, soldering systems exist in which the nucleation and
growth of the intermetallic phases is extremely fast. The
phases have rather the microstructure of fine polycrystals
than a single crystal, and grain boundary diffusion interacts
strongly with bulk diffusion. The effect of interacting bulk
and grain boundary diffusion occurs predominantly in the
g-phase Cu6Sn5. The g-phase shows a “scalloped” morphol-
ogy (e.g. [7,8,12,16,17]), which can only be explained by
intensive nucleation of the g-phase and cooperative
diffusion through the bulk and along the grain boundaries.

The goal of this paper is to present a model in which the
macroscopic diffusive fluxes of the components A, B in
some of the newly formed phases between the parent
phases consist of bulk and grain boundary contributions.
The TEP, as used in Refs. [9,10], is used to analyze the indi-
vidual contributions to the fluxes as well as the kinetics of
the system.

2. The model

2.1. General mass balance and interface velocities

We briefly outline here the background to the problem
as this has already been presented in Refs. [9,10]. There-
fore, we avoid repeating corresponding figures and refer
the reader to Refs. [9,10]. Details with respect to the
applied equations (kinematics, mass balance) can also be
taken from Refs. [9,10].

Let us assume a binary system of components A and B

forming n stable stoichiometric phases Ari B1�ri with ri being
the mole fraction of the component A in the phase i,
0 6 ri 6 1, i = 1, . . . ,n, and ri increasing with i.

As a starting configuration we have a diffusion couple of
unit cross-section consisting of the phases Ar1

B1�r1
at the

left side and Arn B1�rn at the right side of the interface with
inert markers on it. We assume that during a negligible
time interval very small nuclei of all other phases are
formed at the original interface and these grow into a

sequence of phases. All newly nucleated phases contain
some markers originally deposited at the interface of the
diffusion couple. The assumption of stoichiometry guaran-
tees a constant chemical composition and a constant molar
volume Xi in each phase. As an approximation

Xi ¼ riXA þ ð1� riÞXB ð1Þ
can be taken, where XA, XB are the molar volume of A, B,
respectively.

We assume that all interfaces act as ideal sources and
sinks for vacancies and are ideally mobile. In this case
the sources and sinks for vacancies in the bulk are not acti-
vated [18]. This implies that both macroscopic diffusive
fluxes jAi and jBi as well as the material velocity must be
constant in each region occupied by an individual phase.
The reason for the existence of fluxes is due to the fact that
a very small alteration of the mole fraction in each phase
causes large changes in the chemical potentials of both
components. The treatment of this complicated task can,
however, be avoided by application of the TEP. The mac-
roscopic diffusive fluxes may consist of two contributions:
flux through the bulk of grains and flux along the com-
bined path of the grain boundaries and interfaces.

Let us analyze the behavior of an interface between the
phases i and i + 1 where the macroscopic diffusive fluxes
jAi, jBi and jAi+1, jBi+1 occur. The splitting of the diffusive
fluxes into a bulk contribution and a grain boundary/inter-
face contribution is treated in Section 2.2. The balance
between the fluxes at each interface is coupled with both
the interface migration and the thickening or thinning
(deposition or removal of new atomic layers) at the inter-
face. The second effect causes a motion of the lattices of
the individual phases relative to each other.

Let ui be the velocity of the interface between the phases i

and i + 1 relative to the lattice of the phase i, and vi+1 be the
velocity of the interface between the phases i and i + 1 rela-
tive to the lattice of the phase i + 1. The mass conservation
for both the A and B components leads to the equations:

uiri

Xi
� viþ1riþ1

Xiþ1

¼ jAi � jAiþ1; i ¼ 1; . . . ; n� 1; ð2Þ

uið1� riÞ
Xi

� viþ1ð1� riþ1Þ
Xiþ1

¼ jBi � jBiþ1; i ¼ 1; . . . ; n� 1:

ð3Þ
The velocities ui and vi can be calculated from Eqs. (2)

and (3) as:

ui ¼
Xi

ri � riþ1

½ðjAi � jAiþ1Þð1� riþ1Þ � ðjBi � jBiþ1Þriþ1�;

i ¼ 1; . . . ; n� 1; ð4Þ

viþ1 ¼
Xiþ1

ri � riþ1

½ðjAi � jAiþ1Þð1� riÞ � ðjBi � jBiþ1Þri�;

i ¼ 1; . . . ; n� 1: ð5Þ

We consider a closed system with no deposition of mat-
ter at the surface of the system, yielding the boundary
conditions:
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