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Abstract

The macroscopic quantities in a continuum model of viscous sintering are determined from analysis of the dynamic evolution of pore
structures on the microscopic scale that is governed by the principle of fluid mechanics. A single ellipsoidal pore shrinks to be more aniso-
tropic due to local viscosity, even though the surface tension acts to make it more spherical. The constitutive equation is derived by defin-
ing macroscopic quantities as volume averages over a volume element which contains many pores. The presence of dispersed pores
generates a bulk stress that affects the macroscopic bulk viscosity and the shear viscosity. The hydrostatic component of macroscopic
sintering stress is simply calculated from the total pore volume and the total pore area without knowing their surface curvature. The
sintering stress, and then the shrinkage rate, are predicted rigorously from the distribution function of pore size.
� 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The sintering of glass, amorphous preform, gel and
polymer takes place at elevated temperatures due to vis-
cous flow driven by applied stress and the surface tension
according to the principles of fluid mechanics [1,2]. The
theories of viscous sintering proposed by Frenkel [3],
Mackenzie and Shuttleworth [4] and Scherer [5,6] use a
thermodynamic assumption which states that the heat
released by viscous dissipation is equal to the total work
done by surface tension to reduce the surface area.

The macroscopic constitutive equation of viscous sinter-
ing for an isotropic system is expressed as [7–10]:

_Eij ¼
R0ij
2G
þ dij

ðRm � RsÞ
3K

; ð1Þ

where _Eij is the macroscopic strain rate, R0ij and Rm are
deviatoric and hydrostatic components of macroscopic
stress, Rs is the sintering stress, and G and K are the shear
viscosity and the bulk viscosity, respectively. Note that the

sign convention used for sintering stress, or sintering pres-
sure [6], is opposite to that used for stress, since pressure is
positive if it is compressive. These macroscopic quantities
depend not only on the relative density, but also on the
structures on a particle scale, e.g. the shape and structure
of pores [11] and the distribution function of pore size
[12,13]. On the other hand, the microstructural evolution
in viscous sintering is predicted by solving the Stokes equa-
tion numerically [14–17], e.g. by using the finite-element
method [18]. It is important to study the relationship
between the macroscopic properties and the microscopic
structures in terms of fluid mechanics.

The purpose of the present paper is to derive the macro-
scopic constitutive equation of viscous sintering directly
from the principles of fluid mechanics. In Section 2 the
dynamics of a single pore is analyzed by an integral equa-
tion including the surface energy tensor. The densification
is driven by the hydrostatic component of sintering stress,
and the deviatoric components are the driving forces for
the spheroidization of pores. The deformation of an ellip-
soidal pore in shear flow is solved by using Eshelby’s
method [19,20]. In Section 3, Batchelor’s [21] formulation
of a macroscopic stress system in suspension is applied to
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viscous materials containing many pores of different sizes
and shapes. A complete formulation is presented here in
order to make this paper self-contained upon first reading.
The presence of pores generates a bulk stress, which affects
the bulk viscosity and the shear viscosity. Numerical simu-
lations of viscous sintering in microscopic and macroscopic
scales have been performed in Section 4. The effects of pore
size distribution on macroscopic sintering stress and densi-
fication rate are investigated theoretically, and compared
with experiments.

The present analysis provides a method to calculate the
macroscopic sintering stress of a volume element contain-
ing many pores of any shape and size from the total pore
volume and the total pore area without knowing their
surface curvatures. Since high-resolution X-ray micro-
tomography makes it possible to visualize the real
three-dimensional microstructural evolution in sintering
[22–24], our method will be useful to estimate the sintering
stress from the knowledge of microstructure.

2. Dynamics of a single pore in viscous sintering

2.1. Stokes equation

We consider the shrinkage and deformation of a single
pore in an incompressible viscous material. The stress in
the matrix is expressed by:

rij ¼ �pdij þ l
@ui

@xj
þ @uj

@xi

� �
; ð2Þ

where ui is the velocity, l is the viscosity and p = �rii/3 is
the pressure. When the Reynolds number of the relative
motion of the viscous matrix near one pore is small com-
pared to unity, the Stokes equation and mass conservation
are [1]:

@p
@xi
¼ l

@2ui

@xk@xk
ð3Þ

@ui

@xi
¼ 0: ð4Þ

The summation convention for repeated indices is applied
throughout this paper. The boundary condition on the
pore surface is:

�pni þ l
@ui

@xk
þ @uk

@xi

� �
nk ¼ csjni; ð5Þ

where cs is the surface energy, ni is the unit (outward) nor-
mal to the pore surface and j = div n is the curvature. The
curvature is defined that it is positive for a spherical pore.

We will assume that the surface velocity of the pore can
be separated into two parts: the contribution us

i driven by
the surface tension, and the contribution uflow

i induced by
the macroscopic shear flow _Eij:

ui ¼ us
i þ uflow

i : ð6Þ

2.2. Spheroidization of a pore/bubble

The deformation of a single pore due to the surface ten-
sion (Fig. 1) is divided into the spheroidization and the
shrinkage. The spheroidization, where the pore volume is
kept constant, is analyzed by considering a bubble filled
with an inviscid incompressible fluid in Fig. 1b.

We consider a volume integral of the stress over a region
that includes the bubble. The contribution to the volume
integral from the portion of the interfacial surface An lying
within the integration volume Vn is (see Appendix in Ref.
[21]):

2Senergy
ij ¼

Z
An

csðdij � ninjÞdA; ð7Þ

where Senergy
ij is the surface energy tensor [25], the trace of

which is the total surface energy Cn ¼ Senergy
ii ¼ csAn of the

bubble. With V þn denoting the volume of a bubble bounded
by the closed surface Aþn on the outer side of the interface
layer, and V �n and A�n the corresponding quantities for
the inner side of the same interface layer, we have:Z

V þn

rijdV �
Z

V �n

rijdV ¼
Z

An

csðdij � ninjÞdA: ð8Þ

Substituting Eq. (2) into Eq. (8), we have:

�
Z

V þn

pdijdV þ l
Z

V þn

@ui

@xj
þ @uj

@xi

� �
dV þ

Z
V �n

p�dijdV

¼
Z

An

csðdij � ninjÞdA; ð9Þ

where p* is the pressure inside the bubble.
Here we consider an ellipsoidal pore, because Eshelby

[19,20] found that the assumption of an ellipsoidal shape
greatly simplifies the problem. The general ellipsoid is ver-
satile enough to cover a wide variety of particular cases,
e.g. cylinder-like pore, spherical pore and flat crack-like
pore. In an ellipsoidal pore, we assume the strain rate is
independent of position, consistent with Eshelby’s analysis.
The strain rate _eij and the velocity are related by:

_eij ¼
1

2

@ui

@xj
þ @uj

@xi

� �
: ð10Þ

We have:

�dijpV n þ 2l_eijV n þ dijp�V n ¼
Z

An

csðdij � ninjÞdA: ð11Þ

Since the bubble volume is kept constant, the strain rate
tensor _eij is traceless. The pressure inside the bubble must
balance with the hydrostatic component of the surface en-
ergy tensor and the pressure in the matrix:

p� ¼ p þ 2csAn

3V n
: ð12Þ

We define the sintering stress of a pore of arbitrary shape
as:
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