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Abstract

The three classical orientation relationships describing the c-to-a transformation, namely the Bain, Kurdjumov–Sachs (K–S) and

Nishiyama–Wassermann (N–W), are represented in Rodrigues–Frank (R–F) space. Two alternative reference systems are used to

highlight the differences between the three types of misorientation. Some observations obtained on the Gibeon meteorite are ana-

lyzed using the two classes of reference system to reveal features of the transformation under conditions of very slow cooling. It is

shown that the Bain correspondence relations are never satisfied, while the measurements fall in the full range of direction parallel

conditions extending from the K–S to the N–W. The crystallographic features of the Pitsch orientation relation are presented in R–F

space in Appendix A. The experimental observations conform to this type of transformation to a considerably lesser extent than to

the classical K–S and N–W relations.
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1. Introduction

Misorientation, the crystallographic orientation dif-

ference between two individual crystallites, is an impor-

tant parameter used to describe the microtexture of

materials. For instance, the grain boundary texture is

commonly specified in terms of a rotation about an axis

common to both crystallites that brings the coordinate
system of the first into coincidence with that of the

other. This is the so-called angle–axis pair description

and it provides significant information about the grain

boundary geometry. An important example is that of

coincident site lattice (CSL) boundaries, which are un-

iquely described by the axis and angle of misorientation

between the two neighboring grains [1].

In other cases, such as phase transformations, where

the misorientation between the initial phase and its

transformed products is the major concern, it is more

convenient to represent the misorientation between the

two phases using the Rodrigues–Frank (R–F) vector,
since the latter takes the lowest angle solution and inte-

grates the four parameters (i.e. the rotation angle and

the three components of the rotation axis) into a

three-component vector that can be readily displayed

in a three-dimensional Cartesian space (R–F space) [2].

One of the advantages of R–F parameterization is that

either the specimen or the crystal axes can be chosen

for reference; according to this system of representation,
the rotation angle and axis are directly related to a
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vector drawn from the center of the space to the point

representing the rotation axis.

The use of R–F space to represent orientations and

misorientations is relatively new compared to that of

using rotations about three successive axes, i.e. that of

Euler space, and its advantages over the employment
of such other spaces have been addressed by several

researchers [3–5]. However, most of these investigations

were focused on the representation of orientations in

R–F space; only a few were concentrated on the repre-

sentation of misorientations [2,6,7]. In this study, the

misorientation between two crystallites, which is calcu-

lated from orientations measured by electron backscat-

ter diffraction (EBSD) techniques, is represented as an
R–F vector, taking one of the crystallites as the refer-

ence system. Specifically, the three classical correspon-

dence relationships that describe the FCC to BCC

transformation, namely the Bain [8], Kurdjumov–Sachs

[9] and Nishiyama–Wassermann [10,11], are represented

in this space. A second reference system is then intro-

duced, which has certain advantages in the present case.

The variants of the three orientation relationships are
derived directly from the parallelism conditions apply-

ing to the crystallographic planes and directions that de-

fine these relationships. Some recent results concerning

the transformation of taenite (FCC austenite) in the

Gibeon meteorite are then presented to illustrate the

advantages of the use of this space. In Appendix A,

the variants of the Pitsch [12] transformation relation-

ship are also derived from the parallelism conditions.
These are then represented in R–F space using the two

frames of reference (austenite and Bain). Their positions

on a {001} pole figure are compared with those of K–S

and N–W. Some meteorite observations are then plotted

in these two forms of representation (pole figure and

R–F space) and the extent to which the Pitsch relation

applies is evaluated.

2. Misorientation and Rodrigues–Frank space

Here, the orientation matrices for two crystallites A

and B are MA and MB, respectively. Then the misorien-

tation matrix MAB relating these crystallites, arbitrarily

taking crystallite A as the reference system, can be writ-

ten as

MAB ¼ MBM
�1
A : ð1Þ

This matrix defines a rotation that transforms the
coordinate system of the reference crystallite into coinci-

dence with that of the other crystallite. 1 The angle–axis

form associated with this misorientation matrix can

then be calculated as: h ¼ arccosð1
2
½TrðMABÞ � 1�Þ and

[u,v,w] = [m23 � m32,m31 � m13,m12 � m21] [13], where

Tr(MAB) is the trace of matrix MAB and mij

(i, j = 1,2,3) are the elements of MAB.

The four parameters can be further reduced to three
using the Rodrigues formula: R ¼ tan h

2
½u; v;w� [14],

which defines the three components (R1,R2,R3) of the

R–F vector. Each misorientation is now represented as

an R–F vector or more specifically as the endpoint of

the vector in R–F space. To avoid the singularity asso-

ciated with the R–F vector approaching infinity when

the rotation angle h reaches its upper limit p, the space

is reduced to a finite subspace called the fundamental

zone by utilizing the minimum angle–axis pair represen-

tation or disorientation. The latter is obtained by taking

the crystal symmetry into account, i.e. employing the 24

symmetry operations for cubic crystals [4,7].

The fundamental zone of R–F space for cubic sym-

metry is reproduced here in Fig. 1 since most of the dis-

cussion that follows about the four transformation

relationships will be presented in this subspace. Some
authors have reduced the fundamental zone even further

by considering only 1/48 of this space [7]. However, this

approach is not satisfactory for the present study since,

as will be evident in what follows, both the signs and or-

ders of the components of the rotation axis are of

importance.

The three points A, B and C illustrated in the dia-

gram typify the centers of the octahedral (A) and trian-
gular (B) faces of the fundamental zone, while the

vertices of the triangles are characterized by C. There

are 6, 8 and 24, respectively, such points in the funda-

mental zone. It should be emphasized that it is a prop-

1 It should be noted that the matrices used here are associated with

the coordinate frame transformations that are often cited in material

science rather than the body rotations usually employed in other fields.

Moreover, the transformation is always expressed as a conversion of

the reference coordinate system into that of the product.

Fig. 1. Fundamental zone of R–F space for cubic symmetry. The three

illustrated points correspond to the following angle–axis pairs: A: 45�
[100], B: 60� [111] and C: 62.8� ½11 ð

ffiffiffi

2
p

� 1Þ�.
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