

Available online at [www.sciencedirect.com](www.sciencedirect.com/science/journal/02728842)

[Ceramics International 42 \(2016\) 6154](http://dx.doi.org/10.1016/j.ceramint.2016.01.003)–6167

<www.elsevier.com/locate/ceramint>

The field of solid solutions in ternary system of synthetic apatite-type alkaline earth element-yttrium-silicate oxybritholite phases of the composition: $AEE_{\delta}Y_{10-\delta}[SiO_4]_{6}O_{3-0.5\delta}$, where $AEE=Ca$, Sr and Ba

Petr Ptáček * , Tomáš Opravil¹, František Šoukal², Jakub Tkacz³, Jiří Másilko⁴, Eva Bartoníčková⁵

Brno University of Technology, Faculty of Chemistry, Centre for Materials Research CZ.1.05/2.1.00/01.0012, Purkyňova 464/118, Brno CZ-612 00, Czech Republic

> Received 27 November 2015; received in revised form 30 December 2015; accepted 1 January 2016 Available online 8 January 2016

Abstract

This contribution deals with the synthesis, properties and investigation of the field of solid solutions formed between the three end-members of apatite-type alkaline earth element-yttrium-silicate oxybritholites with the hexagonal structure $(P6₃/m)$. The stoichiometric composition of these compounds corresponds to the formula $AEE_6Y_{10-\delta}(SiO_4)_6O_{3-0.5\delta}$, where $AEE=Ca$, Sr and Ba and parameter $\delta \rightarrow 2$. These compounds and their solid solutions crystallize from non-equilibrium high temperature flux as the main product of sinter-crystallization process. Increasing ionic radius of AEE cations has significant effect to the lattice parameters, properties and miscibility of apatite phases. While there is non-limited miscibility of solid solutions formed between $Ca_2Y_8[SiO_4]_6O_2$ and $Sr_2Y_8[SiO_4]_6O_2$, the highest content of barium in the binary solution with these species is limited to 28% and 38%, respectively. The connecting line of these points marks out the borderline for the field of solid solutions in the ternary system. All attempts for the preparation of pure $Ba_2Y_8[SiO_4]_6O_2$ end-member via the ceramic method were not successful. \odot 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Keywords: D. Apatite; Oxybritholite; Yttrium silicates; Solid solution; Sinter-crystallization

1. Introduction

Apatite is the most abundant phosphate mineral, which accounts for more than 95% of total phosphorus (P is the tenth most abundant element on Earth) in the Earth's crust [\[1\]](#page--1-0). Sedimentary (80% of total world production) and igneous phosphate rocks are an important mineral commodity used in the chemical industry (manufacturing of phosphorus, phosphoric

*Corresponding author. Tel.: +420 541 149 389.

opravil@fch.vutbr.cz (T. Opravil), soukal@fch.vutbr.cz (F. Šoukal), tkacz@fch.vutbr.cz (J. Tkacz), masilko@fch.vutbr.cz (J. Másilko), bartonickova@fch.vutbr.cz (E. Bartoníčková). ¹

⁴Tel.: +420 541 149 426.
⁵Tel : +420 541 149 366.

acid, etc.) and food production (production of phosphate fertilizers) [\[2\]](#page--1-0). Furthermore, apatites and their synthetic analogs represent a major class of ionic compounds [\[3\]](#page--1-0) of interest to many disciplines including medical and biomaterials sciences $[4-10]$ $[4-10]$, geology $[11]$, cosmology $[3]$, environmental $[12]$ and nuclear sciences [\[3\],](#page--1-0) preparation of apatite phosphors [\[13\]](#page--1-0), pigments [\[14\]](#page--1-0) catalysts in organic synthesis [\[15\]](#page--1-0) and magnetooptical materials [\[16\].](#page--1-0)

Apatite is the generic name which was first introduced by German geologist A.G. Werner [\[17\]](#page--1-0) to describe calcium phosphates of composition given by simplified "double form" $(Z=2)$ formula $M_{10}(TO_4)_6X_2$. The "single form" is the formula written as $M_5(TO_4)_3X$ [\[18\]](#page--1-0) where the letters M and **X** represent a cation with charge $+1$, $+2$ or $3+$ (Ca²⁺, Pb²⁺, Ba^{2+} , Sr^{2+} , Mn^{2+} , Na^{+} , Ce^{3+} , La^{3+} , Y^{3+} , Bi^{3+} [\[8\]\)](#page--1-0) and monovalent anion $(F^-, Cl^-$ and $OH^-)$, respectively. Cations with charges $+4$, $+5$ and $+6$ (P^{5+} , As^{5+} , V^{5+} , Si^{4+} , S^{6+} , B^{3+} etc.) can occupy the **T** site in the structure of apatite. This

<http://dx.doi.org/10.1016/j.ceramint.2016.01.003>

0272-8842/@ 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

E-mail addresses: ptacek@fch.vutbr.cz (P. Ptáček),

 1 Tel.: +420 541 149 423.

 2 Tel.: +420 541 149 492.
 3 Tel.: +420 541 149 469.

³Tel.: +420 541 149 469.
⁴Tel : +420 541 149 426

 5 Tel.: +420 541 149 366.

composition corresponds to 50 negative charges per unit cell (i.e. 24 $Q^{2-}+2$ (F⁻, Cl⁻ or OH⁻)) [\[3](#page--1-0),[19](#page--1-0)–[22\]](#page--1-0) and enables partial or complete substitution for cationic (M) as well as anionic (**T** and **X**) sites $[23,24]$ $[23,24]$. In synthetic compounds with apatite structure, the X-site can be occupied by Q^{2-} (oxyapatite $[25,26]$) or $(CN_2)^{2}$ (nitrogen-containing apatite $[27]$) ions which increase the above-mentioned negative charges per unit cell. On the contrary, the vacancies $[28,29]$ or H_2O molecule $[19]$ on the X-site can decrease the total negative charge depending on the substitutions within the M -site (Cd [\[30\],](#page--1-0) Co [\[31\],](#page--1-0) K [\[32](#page--1-0),[33\]](#page--1-0) and almost all REE [\[28,](#page--1-0) [29,34](#page--1-0)–[38\]](#page--1-0)) and T-site (Be [\[19\]](#page--1-0), Cr [\[39,40\],](#page--1-0) Ge [\[26,41\]](#page--1-0) and Mn^{5+} [\[19,37\]](#page--1-0)).

The apatite group of minerals is one of five groups categorized in the apatite supergroup of minerals. The other members are hedyphane [\[42\],](#page--1-0) belovite [\[43](#page--1-0),[44\],](#page--1-0) britholite [\[19](#page--1-0),[45](#page--1-0)–[47\]](#page--1-0) and ellestadite [\[19,48](#page--1-0)–[50\]](#page--1-0) groups. Although the kind of original apatite "sensu lato" is uncertain the most important minerals of the apatite group are fluorapatite $(Ca_{10}(PO_4)_6F_2$, often abbreviated as FAP $[51]$), chlorapatite $(Ca_{10}(PO_4)_6Cl_2, ClAP$ $[52]$) and hydroxylapatite $(Ca_{10}(PO_4)_6OH_2$, HAP [\[53\]](#page--1-0)). These minerals were later renamed as apatite-(CaF), apatite-(CaCl) and apatite- (CaOH) [\[19](#page--1-0),[54\]](#page--1-0), respectively. Currently the mineral names are changed back to fluorapatite, chlorapatite and hydroxylapatite [\[19\]](#page--1-0). The nomenclature and the classification (approved by the IMA Commission on New Minerals) of the apatite supergroup minerals is described by Pasero et al. [\[19\]](#page--1-0).

The crystal structure of apatite ("sensu stricto" fluorapatite) was first independently solved in 1930 by Mehmel [\[55\]](#page--1-0) and Náray-Szabó [\[56\]](#page--1-0). The archetype of crystalline structure is hexagonal (space group $P6_3/m$) and contains the speciesdefining cation in two crystallographic sites: M(1) and M (2) with the Wyckoff position of $4f$ and $6h$, respectively. M (1) site is nine-fold coordinated $(6+3)$ and forms a polyhedron which is often referred to as the metaprism [\[19,40](#page--1-0),[57](#page--1-0)–[59\]](#page--1-0) and described as distorted pentagonal bipyramid $[19,21]$ $[19,21]$. M(2) site shows seven-fold $(6+1)$ coordination. The unit-cell parameters are $a=9.3-9.6$ Å and $c=6.7-6.9$ Å [\[19\].](#page--1-0) With respect to the structure of apatite-type compounds $(Fig. 1(a))$, the generic formula can be written as [\[19,59](#page--1-0),[60\]](#page--1-0): ${}^{IX}M(1)_2{}^{VII}M$ $(2)_3$ ^{(IV}TO₄)₃**X** (**Z**=2). The left superscript introduces an ideal

coordination number [\[19\]](#page--1-0). The monoclinic $(P2₁/b)$ variant (it is not considered for distinct species [\[3](#page--1-0),[18\]](#page--1-0) from the hexagonal variant) of hydroxylapatite (clinohydroxylapatite [\[61\]\)](#page--1-0) and chlorapatite was formerly named as apatite-(CaOH)-M and apatite-(CaCl)-M [\[54\],](#page--1-0) respectively. Latterly they were renamed as hydroxylapatite-M and chlorapatite-M [\[19](#page--1-0),[54,62\].](#page--1-0)

Britholite (first described by Winther [\[45\]](#page--1-0)) is one of more common and economically important rare earth element (REE) bearing minerals. The structures of monoclinic $(P2₁ [63], Fig. 1)$ $(P2₁ [63], Fig. 1)$ $(P2₁ [63], Fig. 1)$ $1(b)$) and hexagonal (P6₃) dimorphs of britholite are similar to the atomic arrangement of apatite (a). The first structural investigation concluded a hexagonal apatite substructure $(P6₃)$ [\[64\].](#page--1-0) Noe et al. [\[63\]](#page--1-0) solved the crystal structure of monoclinic dimorph with similar atomic arrangement to apatite and explained the biaxial optical characteristics of britholite by the reduction of symmetry (removing the 3/m element from hexagonal P6 $\frac{3}{m}$ apatite symmetry yielding to monoclinic P2₁ symmetry). Monoclinic and hexagonal dimorphs of natural phase exist as a result of differing arrangements of long and short equivalents of the apatite $Ca(1)$ –O(3) bonds [\[63\]](#page--1-0).

The preparation of numerous compounds with the apatitetype structure including synthetic analogs of apatites [\[65\]](#page--1-0), britholites [\[21](#page--1-0),[22,66](#page--1-0),[67\],](#page--1-0) belovites [\[68\],](#page--1-0) etc., and their solid solutions [\[69\]](#page--1-0) was described in the literature. Usually applied methods involve the high-temperature solid-state synthesis $[4,21,22,66]$ $[4,21,22,66]$ $[4,21,22,66]$, the sol–gel process $[4,16]$, the precipitation method [\[4,70\]](#page--1-0), the hydrothermal [\[69](#page--1-0)–[71\]](#page--1-0) or mechanochemical hydrothermal synthesis [\[9\],](#page--1-0) the citrate gel pyrolysis method $[10]$, the combustion method $[65]$, the microwave processing [\[4\]](#page--1-0) and the emulsion methods [\[4](#page--1-0),[72\],](#page--1-0) etc. The preparation techniques based on aqueous precipitation at moderate temperatures often lead to non-stoichiometric apatites [\[3\].](#page--1-0)

In the previous work [\[34\]](#page--1-0), the synthesis, properties and the role of non-equilibrium flux formed during the sintercrystallization process of $SY_4(SiO_4)_3O$ (or by "double formula" the $Sr_2Y_8(SiO_4)_6O_2$ oxyapatite phase was described. This contribution deals with the preparation, properties and examination of the field of solid solutions miscibility between three end-members of alkaline earth element-yttrium-silicate phases $(AEE_{\delta}Y_{10-\delta}(SiO_4)_{6}O_{3-0.5\delta}$, where $AEE=Ca$, Sr and Ba and the value of $\delta \rightarrow 2$). The course of synthesis was

Fig. 1. The structure of fluorapatite (a, perspective view along the c-axis, i.e. from [001]) according to Hughes et al. [\[58\]](#page--1-0) displayed with the examples of Ca(1), Ca (2), F and O(1) polyhedra. The structure of monoclinic britholite-(Y) (b, perspective) solved by Noe et al. [\[63\].](#page--1-0)

Download English Version:

<https://daneshyari.com/en/article/10623990>

Download Persian Version:

<https://daneshyari.com/article/10623990>

[Daneshyari.com](https://daneshyari.com/)