ELSEVIER

Contents lists available at ScienceDirect

Ceramics International

journal homepage: www.elsevier.com/locate/ceramint

Highly spectrum-selective near-band-edge ultraviolet photodiode based on indium oxide with dipole-forbidden bandgap transition

Yanan Huang ^a, Yongfeng Li ^{a,b,*}, Rui Deng ^c, Bin Yao ^{a,b,*}, Zhanhui Ding ^a, Ligong Zhang ^d, Haifeng Zhao ^d, Zhenzhong Zhang ^d, Lei Liu ^d, Yingrui Sui ^e

- ^a State Key Lab of Superhard Material, College of Physics, Jilin University, Changchun 130012, PR China
- b Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, PR China
- ^c School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, PR China
- d State Key Lab of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, PR China
- e Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping 136000, Jilin, PR China

ARTICLE INFO

Article history: Received 14 January 2016 Received in revised form 27 January 2016 Accepted 29 January 2016 Available online 16 February 2016

Keywords: Indium oxide Dipole-forbidden rule Photoluminescence Ultraviolet photodiode Photoresponse

ABSTRACT

We reported a highly spectrum-selective ultraviolet photodiode based on In_2O_3 with dipole-forbidden bandgap transition. The near-band-edge ultraviolet emission and absorption were observed in the hybrid In_2O_3 films with the In_2O_3 nanocrystals embedded into the amorphous In_2O_3 matrix, indicating that the dipole-forbidden rule of bulk In_2O_3 is broken. The hybrid In_2O_3 film was deposited on the p-GaN/sapphire wafer to form an In_2O_3/p -GaN heterojunction photodiode. The photodiode showed an obvious rectifying behavior in a current-voltage measurement and a narrow-band ultraviolet photoresponse at the near-band-edge region under back-illumination conditions. Electronic structure calculations based on the first-principles method demonstrate that the breaking of dipole-forbidden transition rule is derived from the surface states of In_2O_3 nanocrystals. Our results suggest that tailoring the In_2O_3 nanocrystalline structure is an effective route to achieving novel optical properties and applying these properties to the ultraviolet optoelectronic field.

© 2016 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

1. Introduction

Wide-bandgap oxides have attracted much attention due to their excellent properties and functionalities [1-13]. Among these oxides, indium oxide (In₂O₃) is extensively applied in the fields of solar cells, liquid crystal displays and photovoltaic devices, due to its outstanding properties of combining high transparency in the visible-spectrum range with high electrical conductivity [14-21]. Owing to the dipole-forbidden nature of the band-edge quantum states of In₂O₃, there exists an energy difference between the fundamental bandgap of \sim 2.9 eV and the optical bandgap of \sim 3.8 eV [22–24]. The symmetry properties of the conductionband minimum (CBM) and valence-band maximum (VBM) states of the In₂O₃ prohibit the near-band-edge (NBE) transition, involving the process of light emission and absorption. Therefore, it is commonly believed that In₂O₃ is not a suitable light emitter and absorber in the NBE region (near the fundamental bandgap energy), which hinders its potential application in the ultraviolet

E-mail addresses: liyongfeng@jlu.edu.cn (Y. Li), binyao@jlu.edu.cn (B. Yao).

(UV) optoelectronic field, such as photodiodes (PDs) and light-emitting diodes (LEDs). Nevertheless, recent research suggests that the dipole-forbidden rule can be broken and the strong NBE UV emission was observed in the nanostructural $\rm In_2O_3$ [25–28]. Therefore, $\rm In_2O_3$ nanoengineering is a suitable route to break dipole-forbidden rule and realize UV emission/absorption at the NBE region, which can be used to fabricate high-efficiency UV light emitting and detecting devices.

In this paper, we fabricated the hybrid $\rm In_2O_3$ films with the $\rm In_2O_3$ nanocrystals embedded into the amorphous matrix. Photoluminescence (PL) and optical absorption properties of the hybrid $\rm In_2O_3$ films were investigated in detail. The hybrid $\rm In_2O_3$ film was deposited on p-GaN to form a heterojunction photodiode. A narrow-band UV photoresponse at the NBE region under back-illumination conditions was observed. The physical mechanism of the breaking of dipole-forbidden rule in the $\rm In_2O_3$ nanocrystals is also discussed in detail through first-principles calculations.

2. Experimental and first-principles calculations details

The In_2O_3 thin films were deposited on the quartz substrates at room temperature using pure argon (Ar) as the working gas by

^{*}Corresponding authors at: State Key Lab of Superhard Material, College of Physics, Jilin University, Changchun 130012, PR China.

radio frequency (rf) magnetron sputtering method. Commercial available high-purity In₂O₃ target (purity > 99.99%) with stoichiometric proportion was used in our experiments. The vacuum chamber was evacuated to a base pressure of 10^{-4} Pa before the film deposition and the sputtering pressure was controlled to 0.1 Pa. In order to wipe off impurities on the surface of the In₂O₃ target, the target was pre-sputtered by Ar gas for 10 min before the In₂O₃ layer was deposited on the substrate. The growth process of the In₂O₃ layer lasted for one hour. The as-grown In₂O₃ film was annealed at 400 °C in air for 30 min in a horizontal quartz tube furnace. For the preparation of In₂O₃-based heterojunction photodiode, the In₂O₃ layer was first deposited on the commercial available p-type GaN/sapphire wafer at room temperature and then was annealed at 400 °C in air. The Ni/Au electrodes were deposited through a shadow mask on the p-type GaN layer and served as the p-type electrode. The indium metal was sintered on the In₂O₃ layer and served as the n-type electrode.

The crystal structure characterizations were performed by using X-ray diffraction (XRD) with Cu K α radiation of 1.5406 Å. The surface morphologies and compositions were characterized and recorded using a field-emission scanning electron microscope (FESEM) with an energy dispersive X-ray spectrum (EDS) analyzer. A high-resolution transmission electron microscope (HRTEM) was used to examine the crystalline structure of the hybrid In₂O₃ thin films. The optical absorption spectra were recorded using an UVvis-near-IR spectrophotometer. The PL measurements were performed using a He-Cd laser with a 325 nm line as the excitation source. The current-voltage curves were measured at room temperature in order to further verify the formation of the p-n heterojunction. The spectral response of the In₂O₃-based heterojunction photodiode was recorded using the 150 W Xe lamp, monochromator, chopper and lock-in amplifier. The illumination light is shed onto the heterojunction from the p-GaN side.

First-principles calculations of the electronic structures were carried out using the density functional theory (DFT) as implemented in the Vienna ab-initio simulation package (VASP) code

with the projector augmented wave (PAW) potentials [29,30]. The generalized gradient approximation (GGA) to the exchange-correlation functional was used. The cutoff energy for the plane-wave basis set is 500 eV. For the indium atoms, d states were treated as valence states. For the bulk $\rm In_2O_3$, a 40-atom supercell with bix-byite structure was used in the calculations on the band structures and optical properties. To integrate over the Brillouin zone (BZ), a $2\times2\times2$ k-point mesh was used. An $\rm In_2O_3$ quantum dot (QD) with a diameter of 1.5 nm, including 55 indium and 84 oxygen atoms, is cut from the bixbyite bulk $\rm In_2O_3$.

3. Results and discussion

Fig. 1a shows the typical XRD patterns of as-grown and 400 °C annealed In₂O₃ films deposited on quartz substrates. No diffraction peak is observed for the as-grown In2O3 film, indicating an amorphous structure. For the 400 °C annealed In₂O₃ film, there exist weak diffraction peaks and the matching of observed 2θ values with the standard In₂O₃ diffraction data confirms that the annealed film is crystallized with a cubic structure. To further check the crystal structure after being annealed, we performed the TEM measurement. The TEM image of the In₂O₃ film after being annealed is shown in Fig. 1b. It can be seen that the In₂O₃ nanocrystals are embedded in the amorphous matrix, indicating a hybrid In₂O₃ nanocrystals/amorphous film. The nanocrystal size is estimated to be several nanometers. The surface and cross-sectional SEM images of the annealed In₂O₃ thin film are shown in Fig. 1c and d, respectively. It is observed that the film is compact with a thickness of $\sim 1.2 \, \mu m$. In addition, we also examined the proportion of indium and oxygen elements using EDS analyzer. The indium and oxygen compositions are 41.28 at% and 58.72 at% for the as-grown film, as well as 41.12 at% and 58.88 at% for the annealed film, respectively, suggesting that the stoichiometric proportions of indium and oxygen elements of the films are slightly larger than 2:3.

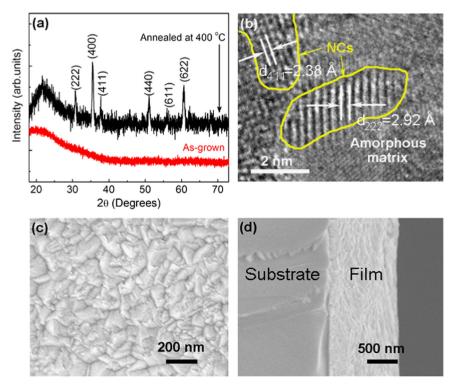


Fig. 1. (a) XRD patterns of the as-grown and 400 °C annealed $\ln_2 O_3$ thin films grown on quartz substrates. (b) TEM image, (c) surface and (d) cross-sectional SEM images of the annealed $\ln_2 O_3$ thin film.

Download English Version:

https://daneshyari.com/en/article/10624138

Download Persian Version:

https://daneshyari.com/article/10624138

<u>Daneshyari.com</u>