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Abstract

Impedance spectroscopy was applied to 2-dimensional graphene materials that were thermally grown on copper substrates to quantitatively
monitor the quality of the as-grown graphene materials without the subsequent transfer process. The presence of the graphene layer prevents the
dissolution of the metallic copper elements in the corrosive electrolyte and provides an interface between the ionic electrolyte and electronic
graphene/copper materials. The highest impedance appears at the graphene/electrolyte to be associated with electrochemically robust graphene
materials, i.e., the as-grown graphene materials subjected to atomic layer deposition of Al,O5. Such an effect is attributed to the anti-corrosive
protection of graphene materials and the defect-curing function of Al,O; in graphene materials. The impedance-based information can be
exploited in-situ without the use of any destructive approaches to evaluate the electrical perfectness vulnerable to preparation environments.

© 2015 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
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1. Introduction

Graphene, which is a monolayer of sp>-bonded carbon
atoms, has been gaining extensive academic/industrial atten-
tion because of its unprecedented electrical [1,2], mechanical
[3], optical [4], chemical properties [5,6], and superior thermal
conductivity [7]. Additionally, several approaches such as the
mechanical exfoliation of graphite, chemical reduction of
graphene oxide, and chemical vapor deposition (CVD) on
metal substrates have been reported [8—10]. The wide range of
interesting properties and development of mass-production in
graphene materials have allowed for numerous applications in
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electrochemical sensors, energy storage devices, and nano/
microelectronics involving active devices [11-16].

The CVD of graphene layers has been widely employed in
addition to the mechanical exfoliation of graphite and chemical
reduction of graphite oxides [8—10]. Despite a wealth of
synthesis and fabrication research, the corresponding monitor-
ing tools in graphene materials have been limited to atomic
force microscopy (AFM), scanning tunneling microscopy
(STM), optical microscopy, X-ray diffraction (XRD), Raman
spectroscopy, Hall measurements, and transmission/scanning
electron microscopy [6,17-22]. To demonstrate the presence of
graphene in single and/or multi-layers and to estimate the
quality of as-grown graphene materials, Raman spectroscopy
has been recognized as a major tool despite the local sampling
area. In addition, optical microscopy and Hall measurements
have been employed in the characterization of these materials.
Another point of interest is that the graphene should be
transferred onto appropriate substrates, typically thermally-
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grown SiO, on Si wafers. In other words, the graphene
materials can encounter undesired defects resulting from the
transfer process, in the form of wrinkles, cracks, etc. The
resulting data may be associated with the process defects in the
transferring process. Although the established protocols have
been successfully applied to the materials, the number of
graphene layers is identified through the relative comparison of
the intensity of 2D- and G-bands observed in Raman spectra.
The graphene synthesis process is vulnerable to the experi-
mental surroundings and the graphene transfers are still
sensitive to the experimenter’s skill in addition to the lengthy
and time-consuming steps and reproducibility concerns. The
qualitative and/or quantitative monitoring should be required
in graphene-based materials.

Impedance spectroscopy offers unique features due to the
frequency-dependent impedance information: (i) simultaneous
measurements of conductivity and dielectric constants, (ii)
discernable separation of electrical origins e.g., bulk, inter-
facial, and electrode-associated effects, and (iii) electrical
homogeneity of non-bulk responses from grain boundaries
and/or electrode-related behaviors. Impedance spectroscopy
has been applied to various materials, i.e., ionic conductors and
electrochemical reactions in solid-oxide fuel cells, grain-
boundary-controlled ceramics, positive temperature coefficient
resistors, and corrosion phenomena in metallic materials
[22-26]. Electrochemical characterizations have been attem-
pted for graphene-associated phenomena, i.e., graphene for
corrosion protection, biological monitoring, and energy-based
applications [12,27-30].

The current study places its main emphasis on the quality of
graphene materials synthesized on metallic materials using
electrochemical impedance spectroscopy in combination with
electrode-polarization between electronic electrodes and ionic
electrolytes: electrochemical monitoring is attempted at the
interfaces between the ionically conducting liquids and the
electrically conducting metals, mostly copper. The perfectness
or quality control is demonstrated for optimized graphene
synthesis.

2. Experimental procedures

The graphene layers were grown via thermal CVD (TCVD)
on 2cm x 2 cm Cu substrates (Cu-113213, 20-pm thickness,
99.9%, Nilaco Corporation, Japan). The gas atmosphere was
controlled with the aim of depleting oxygen involvement using
hydrogen in growing the graphene layers. The processing
chamber was raised to 950 °C at a heating rate of 10 °C/min
along with a continuous flow of hydrogen and kept at 950 °C
for 0.5-2h along with the injection of methane into the
synthesis chamber, where hydrogen and methane were kept
at a ratio of 3 to 1. The chamber was then cooled to ambient
conditions through either furnace cooling or rapid cooling,
where the hydrogen was supplied until the chamber tempera-
ture reached room temperature. After growing the graphene
materials onto copper substrates, Al,O3 was deposited onto the
graphene materials using atomic layer deposition, in which
trimethyl aluminum (TMA) and water were employed as

sources for aluminum and oxygen, respectively at 150 °C.
The ALD cycles were fixed at 100 cycles with a pulse time of
0.5 s in TMA and water, leading to the thickness of approxi-
mately 10 nm.

The as-grown graphene materials were subjected to electro-
chemical impedance spectroscopy tests. The impedance spectra
were acquired in the three-point electrode configuration, where a
Ag/AgCl electrode was employed as a reference electrode. The
impedance information was acquired using an electrochemical
impedance analyzer (SP-300, Biologic, France) between 1 MHz
and 10 mHz with 10 points per decade, and the oscillating
amplitude was fixed at 25 mV. For the corrosive media, 0.1 M
aqueous sodium sulfate (Na,SO4) was selected with a high
concentration of ionic compounds in the electrochemical
impedance spectroscopy and potentiodynamic polarization mea-
surements. The scan rate was set to 60 mV/min, and the open
cell voltage was varied from —50 mV to 1.5 V. Through a
transfer process involving FeCl; as the etchant, the transferred
graphene materials were monitored using Raman spectroscopy
(Micro-Raman, Reinshaw, UK).

3. Results and discussion

Electrochemical impedance spectroscopy was applied to two
types of graphene materials prepared on Cu foils in addition to
the pristine Cu foils. One of the materials was as-grown
graphene on a Cu substrate using TCVD, and the other was as-
grown graphene subjected to the ALD of Al,0;. As demon-
strated in Fig. 1, the corresponding impedance spectra are
divided into two regimes, i.e., ionic contribution and electrode-
based responses, as a function of frequency, where the
frequency decreases from the left to the right portion in the
Nyquist plots. The ionic contribution reflects the ionic trans-
port in the concentrated ionic solution employed in this work,
i.e., Na;SOy4. The 3-point impedance spectroscopy allows for
the interfacial features occurring between the ionic solution
and graphene materials grown on the Cu sheets functioning as
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Fig. 1. Impedance spectra of bare Cu substrates, as-grown graphene materials
on Cu substrates, and as-grown and Al,O; deposited graphene materials.
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