
Author's Accepted Manuscript

Facile Hydrothermal synthesis of cobalt manganese oxides spindles and their magnetic properties

Ji-Yu Wang, Pan-Yong Kuang, Nan Li, Zhao-Qing Liu, Yu-Zhi Su, Shuang Chen

www.elsevier.com/locate/ceramint

PII: S0272-8842(15)00488-5

DOI: http://dx.doi.org/10.1016/j.ceramint.2015.03.083

Reference: CERI10162

To appear in: Ceramics International

Received date: 13 January 2015 Revised date: 16 March 2015 Accepted date: 16 March 2015

Cite this article as: Ji-Yu Wang, Pan-Yong Kuang, Nan Li, Zhao-Qing Liu, Yu-Zhi Su, Shuang Chen, Facile Hydrothermal synthesis of cobalt manganese oxides spindles and their magnetic properties, *Ceramics International*, http://dx.doi.org/10.1016/j.ceramint.2015.03.083

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Facile hydrothermal synthesis of cobalt manganese oxides spindles and their magnetic properties

Ji-Yu Wang^a, Pan-Yong Kuang^a, Nan Li^a, Zhao-Qing Liu^a, *, Yu-Zhi Su^a, Shuang Chen^b, 1*

^aSchool of Chemistry and Chemical Engineering/Guangzhou Key Laboratory for Environmentally

Functional Materials and Technology, Guangzhou University, Guangzhou 510006, China

^bGuangzhou institute of railway technology, Guangzhou 510430, China

Abstract:

In the present work, $CoMnO_3$, Co_3O_4 and Mn_2O_3 powders were prepared by using a simple hydrothermal method, and the urea and polyvinyl alcohol (PVA) were served as the precipitator and surface active agent, respectively. The $CoMnO_3$ and Mn_2O_3 exhibit the same spindle-like structure with the size of several micrometers, while the Mn_2O_3 displays the nanosheet morphology, the as-prepared materials are all high degree of crystallinity. In addition, the magnetic properties discussion indicates that the as-prepared materials exhibit ferromagnetic and antiferromagnetic behaviors at 5 K and 300 K, respectively.

Keywords: CoMnO₃; Co₃O₄; Mn₂O₃; Hydrothermal method; Magnetic properties

1. Introduction

Inorganic 3d-transition metal oxides have attracted tremendous attention due to their remarkable catalytic, magnetic, optical and electrical properties as well as the potential application in engineering and science. Among the multitudinous transition metal oxides, cobalt and manganese oxides (Co₃O₄, Mn₂O₃) obtained the wide applications in rechargeable Li-ion batteries, heterogeneous catalysts, as sensors, as sensors, and an angenetic materials and energy storage. Besides, Co₃O₄ and Mn₂O₃ can also be used as good electrocatalysts/co-catalysts for electrocatalytic/photocatalytic water splitting and exhibit superior performances. To date, Many efforts have been employed to synthesize the Co₃O₄ and Mn₂O₃ et al. cobalt and manganese oxides. For example, Wang et al. prepared a variety of Co₃O₄ nanostructures through the hydrothermal process. In an et al. synthesized the Co₃O₄ nanoflower clusters by using a simple low-temperature hydrothermal method. Yang et al. synthesized Co₃O₄ nanocrystals with different morphology such as nanocube, sphere and rhombododecahedron by employing differently charged surfactants and solvents in the solvothermal system. Then et al. prepared α-Mn₂O₃ microstructures, including spheres and polyhedrons, through a two-step hydrothermal and pyrolysis methods. Coa et al. synthesized large-scale Mn₂O₃ homogeneous core/hollow-shell structures with cube-shaped and dumbbell-shaped morphologies through a facile and low-cost method.

Compared with the simple transition metal oxides (A_xB_y) , perovskite-type composite oxides $(ABO_3, A = Co, Ca, La, Y, Dy; B = Mn, Co, Fe, Cr)$ has certain advantages in thermal, chemical and structural stability in material

E-mail addresses: lzqgzu@gzhu.edu.cn (Z.-Q. Liu); drchen@126.com (S. Chen)

^{*}Corresponding author. Tel.: +86 20 39366908; Fax: +86 20 39366908.

Download English Version:

https://daneshyari.com/en/article/10624598

Download Persian Version:

https://daneshyari.com/article/10624598

<u>Daneshyari.com</u>