
Author's Accepted Manuscript

Role of annealing temperature on electrical and optical properties of Al-doped ZnO thin films

Osman Gürbüz, Sadık Güner

www.elsevier.com/locate/ceramint

PII: S0272-8842(14)01841-0

DOI: http://dx.doi.org/10.1016/j.ceramint.2014.11.081

Reference: CERI9526

To appear in: Ceramics International

Received date: 8 October 2014 Revised date: 14 November 2014 Accepted date: 16 November 2014

Cite this article as: Osman Gürbüz, Sadık Güner, Role of annealing temperature on electrical and optical properties of Al-doped ZnO thin films, *Ceramics International*, http://dx.doi.org/10.1016/j.ceramint.2014.11.081

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Role of annealing temperature on electrical and optical properties of Al-doped ZnO thin films

Osman GÜRBÜZ a, Sadık GÜNER b,*

^a Department of Physics, Yıldız Technical University, Davutpaşa 34210, İstanbul, Turkey

^bDepartment of Physics, Fatih University, Büyükçekmece 34500, İstanbul, Turkey

Abstract

Undoped ZnO and Al-doped ZnO (AZO) thin films 200 nm thick were grown on polished and fused silica (SiO₂) substrates by room temperature RF magnetron sputtering. High-purity ZnO (99.99 %) and Al (99.999 %) target materials were used. The samples were annealed at 300 °C, 400 °C, and 500 °C for 45 min in N₂ ambient gas. The effects of the annealing temperature on crystal structure, optical properties, and resistivity of the AZO thin films were systematically explored. As grown samples exhibit single crystalline Würtzite structure with preferred orientation along c axis from substrate surface. The crystal quality decreases with increasing amount of Al concentration. Annealing process increases the long range crystal order of films. Optical transmittance measurements show that all samples annealed at 500 °C have average 80 % transparency in the visible light. Optical band gap values range between 3.23 eV to 3.72 eV for as grown and annealed samples. The electric conductivity of the AZO films increases with increasing Al concentration. The annealing process especially at 400 °C provides the best conductivity due to the improved crystal structure and carrier concentration of films. The minimum resistivity value of $9.40 \times 10^{-05} \Omega cm$ was measured for the Al_{12.30}ZnO film after annealing. The mobility decreases due to increase in grain boundary scattering.

Keywords: Al-doped ZnO; RF Magnetron sputtering; Optical and electrical properties

^{*} Corresponding author. Tel.: +90 212 866 3300; Fax: +90212 866 3402 E-mail Address: sguner@fatih.edu.tr

Download English Version:

https://daneshyari.com/en/article/10624790

Download Persian Version:

https://daneshyari.com/article/10624790

<u>Daneshyari.com</u>