ELSEVIER

Contents lists available at www.sciencedirect.com

Journal of the European Ceramic Society

journal homepage: www.elsevier.com/locate/jeurceramsoc

Short communication

Thermal stability of Ti₃AlC₂ in Ar-10vol.%CO atmosphere

CrossMark

Jianli Gai^{a,b}, Jixin Chen^{a,*}, Meishuan Li^a

- ^a Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- ^b University of Chinese Academy of Sciences, Beijing 100039, China

ARTICLE INFO

Article history: Received 10 November 2015 Received in revised form 6 April 2016 Accepted 8 April 2016 Available online 14 April 2016

Keywords: Ti₃AlC₂ Thermal stability Decomposition Diffusion

ABSTRACT

Thermal stability of Ti_3AlC_2 at $1250-1400\,^{\circ}C$ in 10%CO-Ar atmosphere has been investigated. Decomposition of Ti_3AlC_2 occurs when the temperature is $1250\,^{\circ}C$. After the treatment at $1300-1400\,^{\circ}C$, nanoscale aluminum oxycarbides (Al_2OC and Al_4O_4C) were formed on the sample surface due to the reaction between Al and CO. At $1250-1300\,^{\circ}C$, a mixture layer of Ti(O,C) and Al_2O_3 was formed; while at $1350-1400\,^{\circ}C$, the reaction scale below the nanoscale aluminum oxycarbides are a duplex layer with a porous Ti(O,C) inner layer and a mixture of Ti(O,C) and Al-containing compounds outer layer. The outward extraction of Al and Ti along some special planes, i.e., $\{0\,0\,0\,1\}$ and $\{1\,1\,-2\,0\}$ of Ti_3AlC_2 , is believed to result in the orderly arranged pores in the inner porous Ti(O,C) layer.

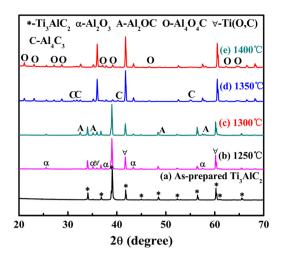
© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

M_{n+1}AX_n phase materials (M is a transition metal, A is a III A or IV A group element, and X is either C or N) are excellent candidate materials for many applications due to their unique combination of properties of both metals and ceramics [1–3]. Ti₃AlC₂, one typical representative of the MAX phases, has been well studied for its low density, high electrical and thermal conductivity, high modulus and moderate strength, and good high-temperature oxidation resistance, etc [4–7]. However, calculation on electronic and structural properties of Ti₃AlC₂ showed that the Ti-Al bonds were relatively weaker [8]. This suggests that the thermal stability of Ti₃AlC₂ should be mainly determined by these weak bonds. Recently, firstprinciple calculation on defects configuration in another similar MAX phase material (Ti₃SiC₂) further showed that it was easier for Ti and Si to diffuse along the basal planes ({0001} planes) [9]. But diffusion of Ti and Si atoms along other planes has not been reported yet.

Thermal stability of Ti_3AlC_2 in different atmosphere at high temperatures has been widely investigated, which indicated that it depends strongly on the environment. Wang and Zhou [10] studied the stability of Ti_3AlC_2 in argon and found that nano-laminate Ti_3AlC_2 was stable below at least $1400\,^{\circ}C$. By treating in vacuum, Pang et al. [11] reported that Ti_3AlC_2 decomposed above $1400\,^{\circ}C$ through the sublimation of Ti and Al. Chen et al. [12] reported that Ti_3AlC_2 could decompose at temperature as low as $1150\,^{\circ}C$ in

high vacuum ($\sim 10^{-2}$ Pa). Thermal stability investigation on Ti₃SiC₂ showed that it was stable at 1800 °C under argon atmosphere in a tungsten-heated furnace, but dissociated to TiC_x when using a graphite heater [13], which suggests that carbon containing environment could lower the chemical stability of Ti₃SiC₂.


Our previous work, i.e., synthesis of Al_2OC whiskers by heat treating bulk Ti_3AlC_2 in a carbon-containing environment [14], showed that it might be the formation of CO that accelerates the decomposition of Ti_3AlC_2 . Therefore, one aim of this paper is to confirm the effect of CO on the decomposition of Ti_3AlC_2 by treating Ti_3AlC_2 in flowing Ar-10vol.%CO. In addition, this paper can also contribute to the application of Ti_3AlC_2 in CO-containing atmosphere at high temperature.

2. Experimental

Bulk Ti_3AlC_2 material was fabricated by the solid–liquid reaction synthesis and simultaneous in situ hot pressing process [1]. For thermal stability experiments, rectangular samples $(15\times5\times2\,\mathrm{mm}^3)$ were cut using an electrical-discharge machining method. The samples were ground, polished and ultrasonically cleaned. The heat treatments were performed in a high temperature furnace in flowing Ar-10vol.%CO (flowing rate is $0.5\,l/min$) by heating the samples from ambient temperature to $1250-1400\,^{\circ}C$ at a rate of $8\,^{\circ}C/min$ and holding for 30 min.

Surface phase compositions after the treatments were identified by X-ray diffractometer (XRD) with Cu K α radiation (Rigaku D/mac-2400, Japan). The surface and cross-sectional microstructures of the treated samples were observed by the SUPRA35 scanning

^{*} Corresponding author at: 72 Wenhua Road, Shenyang 110016, China. *E-mail address*: jxchen@imr.ac.cn (J. Chen).

Fig. 1. XRD patterns of samples before and after the treatment at $1250-1400\,^{\circ}\text{C}$ for $30\,\text{min}$

electron microscope (SEM, LEO, Oberkochen, Germany), equipped with an energy-dispersive spectroscopy (EDS, INCA, Oxford Instrument, Oxford, U. K.) system.

3. Results and discussion

Fig. 1 shows the typical XRD patterns of the sample surfaces before and after the treatments at $1250-1400\,^{\circ}\mathrm{C}$ for $30\,\mathrm{min}$. The asprepared $\mathrm{Ti}_3\mathrm{AlC}_2$ sample is highly pure, as shown in Fig. 1a. After the treatment at $1250\,\mathrm{and}\,1300\,^{\circ}\mathrm{C}$, $\mathrm{Ti}_3\mathrm{AlC}_2$ is still the dominating phase, as shown in Fig. 1b and c. Besides, α -Al $_2\mathrm{O}_3$ and one phase with TiC_x structure were also detected. Considering the existence of CO in the atmosphere, the material with TiC_x structure here should be $\mathrm{Ti}(\mathrm{O},\mathrm{C})$. Al $_2\mathrm{O}\mathrm{C}$ was also formed after the treatment at $1300\,^{\circ}\mathrm{C}$, which should be attributed to the reaction between Al and CO [15]. While no peak belonging to $\mathrm{Ti}_3\mathrm{AlC}_2$ can be detected after the

Table 1 EDS analysis results of the nanoscale materials formed on sample surfaces after treating at $1300-1400\,^{\circ}C$.

Element	Al	С	0
1300°C	47.05	27.90	25.05
1350°C	48.79	19.79	31.43
1400°C	49.82	24.98	28.09

treatment at 1350 and 1400 $^{\circ}$ C, indicating that the reaction scale is very thick. Beside α -Al₂O₃, Ti(O,C) and Al₂OC, Al₄C₃ and Al₄O₄C were also detected, which might also be attributed to the further reaction between Al and CO.

The surface morphologies of samples treated at 1250–1400 °C are shown in Fig. 2. Nanoscale materials (NMs) can be found on all the sample surfaces. The amount of NMs becomes larger with the rise of treating temperature. The NMs formed at 1300 °C are two-dimensional sheet-like materials with about 200-300 nm in thickness and more than $50 \, \mu m^2$ in area, as shown in Fig. 2b. The EDS analysis taken from the sheet-like materials shows that their elemental compositions are Al, O and C and their atomic ratio is close to 2:1:1, as shown in Table 1. Combining the phase composition results in XRD, the sheet-like materials should be Al₂OC. For the samples treated at 1350 and 1400 °C, the elemental compositions of NMs on the surfaces are similar to that formed at 1300 °C, but the phase compositions should contain Al₂OC and some Al₄O₄C because of the higher O content, as shown in Table 1. In addition, Al₄C₃ phase with hydrolytic property was excluded because of the nearly invariant surface morphologies after placing the samples in air for more than one year.

To understand the reaction process, the morphologies and phase compositions of the cross-sections were examined. Fig. 3a and b shows the back-scattered electron images of the fractured specimens treated at 1300 and 1350 °C and the corresponding EDS mapping scan results taken from the region circled by white lines. The results of the sample treated at 1250 and 1400 °C are similar to that treated at 1300 and 1350 °C, respectively, and not shown here for brevity. It can be seen that the reaction layer becomes thicker

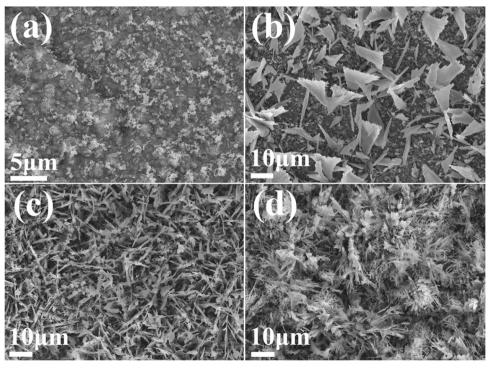


Fig. 2. Surface morphologies of samples after the treatment at (a) 1250 °C, (b) 1300 °C, (c) 1350 °C and (d) 1400 °C.

Download English Version:

https://daneshyari.com/en/article/10629266

Download Persian Version:

https://daneshyari.com/article/10629266

<u>Daneshyari.com</u>