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Relation between ideal and real strengths of metallic glasses
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Available experimental data of about 110metallic glasses show that the ratios of room-temperature strengths to
low-temperature ideal strengths have universal upper and lower bounds. The two bounds are rationalized by
taking cooperative shearing of shear transformation zone (STZ) operations into consideration in the potential
energy landscape thermodynamics. It is striking to find that the real-to-ideal strength gap results from both
configurational and thermo-vibrational contributions to STZs. The former determines the upper bound, while
the latter further decreases strengths to the lower bound. The results may shed new insight into metallic glass
strength and flow.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The scientific interest in strength of materials could be traced back to
the famous notebooks of Leonardo da Vinci [1]. However, not until the
early years of the twentieth century did people relate strength of mate-
rials with their atomic structure. In 1926, Jacov Frenkel [2] calculated
the ideal shear strength of a perfect fcc metal to be about a tenth of its
shear modulus G. However, real crystalline materials yield strengths
two to three orders of magnitude lower. This discrepancy was attributed
to dislocations. The real strengths for crystalline materials have been
widely estimated according to the resistance of dislocation motion such
as Peierls–Nabarro force, grain size, dislocation junction, etc. [3–6]. In con-
trast, metallic glasses or glassy alloys, representing a young class of ad-
vanced materials, are free of dislocations [7–10]. It is highly expected
that strengths of such amorphous materials could approach the theoreti-
cal limit. These materials receive therefore much attention from both
scientific and engineering points of view [11–20].

In this aspect, a key finding is the intrinsic correlation of strength for
inhomogeneous deformation with glass transition temperature [14,
16,17], which indicates the similarity between stress-driven yielding
and temperature-caused glass transition in metallic glasses [16,21,22].
Actually, both physical processes are underpinned by collective motions
of atomic clusters, termed shear transformation zones (STZs) [23–25].
By developing the cooperative shearing model (CSM) of STZs, Johnson
and Samwer [13] proposed a universal power-law of 2/3 of temperature
dependent yield strength. In particular, Cheng and Ma [18] applied this

power law to homogeneous deformation by atomistic calculations, and
successfully predicted the ideal strengths for metallic glasses. Their pre-
diction has recently been confirmed by employing an in situ TEM ten-
sion technique [20]. These intriguing progresses greatly motivate us to
understand metallic glass strengths from real value to ideal/theoretical
limit. In fact, their relationship has not been established theoretically
up to now,which is amajor scientific challenge. In this letter, we analyze
the experimental data of both real and ideal strengths formore than 100
metallic glasses from 24 different alloy systems. The relationship be-
tween room-temperature (RT) and low-temperature ideal strengths is
quantitatively bridged combining the potential energy landscape (PEL)
theory, the CSM of STZs with fracture mechanics.

2. Experimental observations

Fig. 1 presents the macroscopic shear strength τyT at RT versus the
athermal theoretical shear strength τ0 for ~110 metallic glasses. Here,
we roughly adopt τyT as half of the yield strength σyT in monotonic
loading (Tresca's yield criterion), ignoring the small normal stress
dependence [13,17,26]. It must be pointed out that the “thermal” actu-
ally means a temperature as low as possible rather than the absolute
zero temperature. Following the previous works [16,18,27], τ0 maybe
recall the origin ofG/10, skirting its very small temperature dependence
[13,28,29]. It is believed that these approximations cannot significantly
change the essential physics. The experimental data for σyT and G at RT
can be found in the literature [13,21,30–33]. It can be observed from
Fig. 1 that the real strengths are indeed quite close to their theoretical
strengths, being of the same order of magnitude. The former is only a
fraction smaller than the latter. Very interestingly however, all experi-
mental data can be bounded by two straight lines. More specifically,
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the ratio of the RT strength to the athermal theoretical strength obeys
the following universal relationship:

Γupper≥
τyT
τ0

≥Γ lower: ð1Þ

The fitting to the experimental data in Fig. 1 shows that the two
bounds, Γupper and Γlower, are very close to values of 0.316 and 0.122,
respectively. It is clear that there exists a gap between the real strengths
and their ideal limit, i.e. τyT/τ0=1, marked by the green dashed line in
Fig. 1. Some questions should arise from our observations. What is the
physical meaning of the upper and lower bounds of the real strengths?
Due to absence of dislocations in metallic glasses, what should be re-
sponsible for the gap of the real-ideal strengths? Undoubtedly, defini-
tive answers originate from the unique response of atomic structures
of metallic glasses to applied stress. Considering the complexity of dis-
ordered structures, we resort to the PEL theory [34–37] to reveal the
underlying physics of our observed phenomena.

3. Theory and discussion

PEL is a multidimensional surface describing the potential energy
function of a glassy system that depends on the spatial location for
its constituent particles. Intuitively, the state of such a system can
be well represented by a point on or above the hypersurface. By anal-
ogy to Earth's topographic maps, Stillinger and Weber [34,35] provid-
ed a formally exact portioning of the configurational space as a sum of
distinct basins, associating with each local minimum of the potential
energy surface, namely, an inherent structures (IS). The PEL picture
provides a natural separation of the system's state into sampling
distinct ISs and vibration within an IS. The PEL approach thus permits
identification of the IS in an ideal metallic glass at very low tempera-
ture and a real sample at RT. As illustrated on the left in Fig. 2, the
ideal sample should correspond to the IS with the lowest potential
energy (deepest “megabasin”) that is devoid of substantial regions
with local crystalline order [38]. At a low enough temperature the
ideal system becomes stuck in the single IS with almost frozen vibra-
tion, unable to surmount the highest energy barrier. As temperature
increases to RT, the depth of ISs in the real sample decreases and
the vibration intensifies, as shown on the right in Fig. 2. Meanwhile,
the real system displays a proliferation of well-separated megabasins,
corresponding to the increase of the configurational entropy. Conse-
quently, the difference of the IS between the ideal system and the

real one has the configurational and vibrational aspects. It is such dif-
ference that results in the gap of their strengths, because the strength
of systems per se reflects the mechanical instability of their ISs that is
normally obscured by the thermal vibration [13,39–41]. Hence, the
ratio of the real-ideal strengths can be expressed as a sum of the
configurational contribution rconf and the thermo-vibrational one
rther, that is

τyT
τ0

¼ rconf þ rther; ð2Þ

where rconf ¼ τy0=τ0
h i

conf
measures the ratio between the ideal

strengths and the real strengths at the athermal limit, and rther ¼
τyT=τy0
h i

ther
denotes the thermal softening effect on the real strengths

due to temperature increase from very low temperature to RT. Next, the
main task is to quantitatively determine the configuration and vibration
terms in Eq. (2).

Recent studies have identified solute-centered polyhedra as the
fundamental building blocks of metallic glasses, constituting short-
range-order; these polyhedra subsequently pack together to fill three-
dimensional space obeying a certain rule, giving rise to medium-range-
order [42–45]. Driven by external stress, the short-to-medium-range
order could be lost via STZ operations. Therefore, it is reasonable to treat
the virgin metallic glass as a composite consisting of potential STZ sites
within the elastic confinement of a surrounding matrix [23,46]. Here we
consider a semi-infinitemetallic glass plate containing an edge-crack sub-
ject to a remote shear stress. The edge-crack has finite size that is so small

Fig. 1. Real shear strength τyT at RT versus “athermal” ideal shear strength τ0 for about 110 metallic glasses from 24 different alloy systems, showing the upper and lower bounds.
The upper bound, i.e., the red solid line is best fitted by Eq. (5). The lower bound, i.e., the blue solid line is best fitted by Eq. (7). The green dashed line is the athermal ideal strength
limit.

Fig. 2. Schematic illustration of archetypal potential energy landscapes of athermal
ideal and RT real metallic glass.
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