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The relaxation of the transverse magnetization components caused by both dipolar interactions between the
spins of different polymer chains and the dipolar coupling between CH-protons on an isolated Kuhn segment
along a single polymer chain have been calculated. Explicit expressions for the transverse relaxation function
are given in terms of the absolute mean squared displacement of the Kuhn segment during melt gr(t), the
tangent vector dynamical correlation function 〈bn(t)b(0)〉, the segmental relaxation time τs, the Kuhn seg-
ment length b, the bond length a0, the internuclear distance d, and the spin number density ρs. It is shown
that the functional dependence of the intramolecular relaxation function on 〈bn(t)b(0)〉 is fairly weak. The
time-dependence of the intramolecular contribution to the transverse relaxation function is dominated by
the probability density distribution function of the end-to-end vector of the Kuhn segment. The long-time
decay of the intramolecular contribution to the transverse relaxation function is found to scale as t−3/2 for
τsbb tbbτmax, where τmaxis the maximum relaxation time of polymer chains in melts. For times much less
than the spin–spin relaxation time, T2≈10−3−10−2s, we show that the intermolecular contribution to
the relaxation function is given by the following expression: exp(−λ1(b, τs, ρs)t2/gr3/2(t)). Both the numerical
coefficient and the functional dependence of λ1on b, τs and ρs reproduce the expression obtained from the
frequently used second cumulant approximation. For longer times (T2≤ tbbτmax), the intermolecular contri-
bution is determined by the following relation: exp(−λ2(b, τs, ρs, t)gr(t)). We show that λ2 increases loga-
rithmically with t. The molecular mass independence of λ1and λ2 shows that, in polymer melts with
molecular masses Mw far above the critical value Mc, the relevant experimental window for the decay of
the intermolecular relaxation function is connected with the anomalous diffusion regime. Comparison with
the experimental data suggests that the intermolecular contribution plays a significant role in the NMR relax-
ation process in polymer systems close to the melting point.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

One of the fundamental problems of magnetic resonance in poly-
mer systems is the calculation of the transverse relaxation function.
Currently, detailed theories of free induction decay (FID) are only de-
veloped for systems with very short or very long local field modula-
tion correlation times δτсbb1 or δτс>>1, where δ is the width of
an absorption line. The first case is typical of simple liquids; the sec-
ond one occurs in crystal lattices. For the intermediate correlation
times δτc~1 that occur in melts with molecular masses Mw far
above the critical value Mc, the general expression for the transverse
relaxation function has not yet been obtained.

Magnetic relaxation in melts of low molecular mass polymers
(MwbbMc) is well described with the Bloch–Redfield–Wangsness ap-
proach [1–7]. According to this method, the diffusion processes are
assumed to be very fast relative to the experimentally relevant time
scale; thus, the magnetization decay is very slow. For fast modula-
tions δτсbb1, Gaussian stochastic processes lead to the motional

narrowing limit, in which the Bloch–Redfield–Wangsness theory is
applicable.

Entangled polymer melts (Mw>>Mc) have been successfully trea-
ted by the method of cumulants [8–16]. For Gaussian stochastic pro-
cesses, the cumulant expansion holds whether fast or slow motion
is assumed. For relatively long correlation times, the magnetic reso-
nance line shape has been found to be very similar to that of a Gauss-
ian function.

Another facet of the problem is the consideration of intra- and
intermolecular contributions to magnetic relaxation in polymer sys-
tems. Generally, spin-spin interactions within a single Kuhn segment
(intramolecular interactions) are expected to dominate in relaxation
processes because the intermolecular dipole-dipole interactions de-
crease with r, exhibiting an r−3 dependence. Nevertheless, recent ex-
perimental research [17,18] has shown that for low resonance
frequencies, ν~102−108Hz, intermolecular contributions can be
greater than intramolecular contributions. This result is also sup-
ported by the theoretical estimate of the spin–lattice relaxation rate
for low frequencies [19,20]: (1/T1)int ra~ν−1/3 and (1/T1)int er~ν−1/2,
where τmax

−1 bνbτs−1. Here, τs=10−10−10−9s is a typical value of
the Kuhn segment relaxation time at room temperature,
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τmax≈τsN3÷3.4 is the maximum relaxation time of polymer chains in
melts, and N is the number of Kuhn segments per polymer chain.

Based on the reptation model [21] and the twice renormalized
Rouse model [22], Fenchenko [16] derived the relations for the sec-
ond ( ~M2 tð Þ) and fourth ( ~M4 tð Þ) cumulants, considering both the in-
tramolecular and intermolecular contributions. The results proved
to be in a good agreement with experimental data in the time interval
0b tbT2 for molecular masses Mw>>Mc. A reasonable estimate for
the spin–spin relaxation time in polymer melts with molecular
masses Mw>>Mc is T2≈10−3−10−2s. However, the theoretical
values of the transverse relaxation function within the relevant ex-
perimental window T2b tbτmax differ from the experimental data by
a factor greater than ten.

Using the stochastic trajectory method, Brereton [23–25] calculat-
ed the transverse relaxation function for an isolated spin pair that is
rigidly connected to a monomer of a polymer chain. Although this
method allows both short (tbT2) and long (t>T2) times to be consid-
ered, it only takes into account intramolecular interactions and ne-
glects intermolecular ones.

All perturbation theories address the first few orders of expansion.
For polymer melts, the stochastic effects are not assumed to be strong
compared to the constant Zeeman interaction. However, this assump-
tion is only valid in the case of either intramolecular (“internal”) re-
laxation or short-time (tbT2) intermolecular effects. A theoretical
description of slow stochastic processes may require additional
terms in the expansion series; thus, the regime of relatively slow mo-
tion (δτc~1) is still beyond the scope of perturbation theory.

In this paper, we present a new perturbation technique for the in-
vestigation of the transverse relaxation characterized by intermediate
times τs≪ t≪τmax. In the given approach, both the intramolecular
and intermolecular contributions are considered. We argue that the
probability distribution of the end-to-end vector of the Kuhn segment
is manifested in the contribution of intramolecular interactions to the
relaxation processes. Using the method described by Alexandrov–
Karamjan [26] for the case of intermolecular (“external”) relaxation
in a system with a diffusion-modulated interaction, it is shown that
the intermolecular contribution to the transverse relaxation function
in polymer melts is described by a stretched exponential law. The
theoretical results are in a good agreement with the experimental
results.

2. Mathematical formulation of the problem

2.1. The intermolecular contribution

Initially, we consider the case of a frozen intra-group and segmen-
tal motion. In this case, the free induction decay can be treated by the
method of moments [27,28] or the modified method of moment [29],
e.g., by the methods commonly used for describing FID in solids.

The secular part of the magnetic dipole–dipole interaction Hamil-
tonian can be written in the following form:

Ĥ ¼ ℏ α̂ þ β̂
� �

α̂ ¼ 1
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Here, Ix is the x component of the total moment operator, θjk is the
angle between an external magnetic field B0 and the vector rjk con-
necting the j-th and k-th spins, γ is the magnetogyric ratio, and N0

is the total number of spins in the volume sample V. Note that α̂ ; Ix½ � ¼
0 and β̂ ; Ix

h i
≠0.

The expansion of the transverse relaxation function in a power

series of the commutator α̂ ; β̂
h i

leads to the following expression

for FID in solids when I=1/2 [29]:
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{B4} indicates that the series was cut off at the fourth order terms. The

Usolids(t) function that is connected with the β̂- component of the
magnetic dipole-dipole interaction Hamiltonian presents direct
quantum-mechanical transitions, which are defined in terms of the
second order term of the perturbation expansion for FID. The Ssolids
(t) function describes the three spin processes induced by the com-

mutator of α̂ (the scalar exchange interactions) and β̂ components.
Crystals demonstrate the best agreement between Eq. 2 and the ex-
perimental data [28,29].

Now, let the segmental motions in the polymer melts be switched
on, i.e., the spin system fluctuates in a spatial position with a rate of
τc−1~δ. For the sake of convenience, we introduce a procedure for
the numeration of the spins in polymer melts. The vectors
rαnΨ;βkΩ tð Þ connecting the spins Ψ and Ω (which belong to the nth
and kth Kuhn segments of macromolecules α and β, respectively) at
moment t are assumed to be random functions. We consider the sys-
tem of spins coupled by dipole–dipole intermolecular interactions in
which each Kuhn segment bears two spin−1

2= nuclei. Averaging
Eq. 2 over all possible values of the random functions rαjΨ;βkΩ tð Þ and
expanding tg(BαnΨ, βkΩt/(2ℏ)) in a power series to the first order,
we obtain
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where 〈…〉t is the average over rαnΨ;βkΩ tð Þ; nMis the number of mac-
romolecules in the melt; A, C, and D are complex indexes that de-
scribe all combinations of a number triple (α, n, Ψ); and T̂ is the
time ordering operator. Bαn1, αn2(t)=−(3γ2ℏ2/2d3)(3 cos 2θαn1, αn2

(t)−1) is the coordinate part of the intrasegmental dipolar couplings
at moment t, and d is the internuclear distance (for example, the dis-
tance between the protons in a CH2 group is d≈1:8A0). B1n1, βk1(t)=
−(3γ2ℏ2/2r1n1, βk13 (t))(3 cos 2θ1n1, βk1(t)−1) is the coordinate part of
the intermolecular dipolar couplings modulated by the relative mo-
tions of macromolecules. Note that the second-order terms in expan-
sions (2) and (3) are zero because of the commutation rules of
moment operators; in addition, the stochastic independence of the
relative motions of the protons on different chains and the Brownian
rotation motions of the Kuhn segment are assumed. Here, the Fint er(t)
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