

Available online at www.sciencedirect.com

Materials Research Bulletin 40 (2005) 1223-1232

www.elsevier.com/locate/matresbu

Synthesis and electrical properties of ordered perovskite oxide $Cd_{3-x-y}Cu_xA_yTeO_6$ (A = Li, Na; $0.00 \le x, y \le 0.15$)

Hiroyuki Tetsuka*, Yue Jin Shan, Keitaro Tezuka, Hideo Imoto

Department of Applied Chemistry, Faculty of Engineering, Utsunomiya University, 7-1-2 Yoto, Utsunomiya 321-8585, Japan

Received 2 January 2005; received in revised form 21 February 2005; accepted 10 March 2005

Abstract

Polycrystalline $Cd_{3-x-y}Cu_xA_yTeO_6$ (A = Li, Na) samples were prepared by solid-state reaction, and their crystal structure and electrical properties were investigated. In $Cd_{3-x}Cu_xTeO_6$ and $Cd_{3-y}A_yTeO_6$ (A = Li, Na), the maxim solubility of x and y was 0.15 and 0.15 for A = Li, 0.05 for A = Na, respectively. For co-substituted samples $Cd_{2.9-y}Cu_{0.1}Li_yTeO_6$ and $Cd_{2.9-y}Cu_{0.1}Na_yTeO_6$, the maxim solubility of x was the same as single substitution above-mentioned. The alkali-metal substituted samples $Cd_{3-y}A_yTeO_6$ (A = Li, Na) showed a negative Seebeck coefficient, which indicates that the major conduction carriers are electron. On the other hand, the co-substituted samples $Cd_{2.9-y}Cu_{0.1}A_yTeO_6$ (A = Li, Na) represented a positive Seebeck coefficient, and major conduction carriers were hole through substitution by copper ions.

© 2005 Elsevier Ltd. All rights reserved.

Keywords: A. Semiconductors; A. Oxides; C. X-ray diffraction; D. Electrical properties

1. Introduction

Tricadmium tellurium(VI) oxide (Cd₃TeO₆) has an ordered perovskite structure, in which B-sites are occupied by Cd²⁺ and Te⁶⁺ ions in the NaCl-type arrangement [1,2]. Cd₃TeO₆ is composed of the cations having the same outer electron configurations ($4d^{10}5s^{0}$) without unpaired electrons and expected to be insulating. However, it generally shows an n-type semiconducting property with a low electrical

* Corresponding author. Tel.: +81 28 689 6174; fax: +81 28 689 6174.

E-mail address: tetsuka@mwb.biglobe.ne.jp (H. Tetsuka).

^{0025-5408/\$ –} see front matter © 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.materresbull.2005.03.019

resistivity of ~0.1 Ω cm at room temperature, which indicates the oxygen vacancy. Furthermore, the resistivity can be decreased remarkably by increasing the electron carrier concentration through the substitution of trivalent cation for Cd²⁺ ions. For example, the electrical resistivity of the In-substituted single crystal Cd_{3-x}In_xTeO₆ is of the order of 10⁻⁴ Ω cm [3]. Thus, the research of the electron doping has been successfully carried out, but the hole doping has not been attempted. If hole doping is also achieved for Cd₃TeO₆, the bipolar semiconductor like those based on silicon will be possible for useful various applications.

The electronic structures of the oxides of heavy metal cations with $(n - 1)d^{10}ns^0$ configurations are very favorable for the n-type conduction, but not for the p-type conduction because of the low energy of the d bands [4–7]. For realizing p-type conduction in Cd₃TeO₆, we may have to add some valence state where electrons can be removed. Many p-type oxide semiconductors contain copper ions, which have 3d states strongly interacting with the O 2p, such as La₂CuO₄, CuAlO₂ and SrCu₂O₂ [8–11]. In the present work, we approached the problem of hole doping in Cd₃TeO₆ in two ways. The first approach was the replacement of the divalent cadmium cations with alkali-metal ions (Li⁺ and Na⁺). In the second approach, we examined the simultaneous substitution of alkali-metal ions and copper ions, which is abbreviated to "co-substitution" in the following.

2. Experimental

The polycrystalline samples of $Cd_{3-x-y}Cu_xA_yTeO_6$ (A = Li, Na) were prepared by the solid-state reaction. Starting materials, CdO (purity: 99.9%), TeO₂ (purity: 99.9%), CuO (purity: 99.9%), Li₂CO₃ (purity: 99.7%) and Na₂CO₃ (purity: 99.7%) were mixed in stoichiometry ratio. The mixed powder was calcined at 1023 K for 9 h in air, then ground, pressed into pellets and sintered at 1353 K for 2 h in oxygen atmosphere. The obtained samples were characterized by powder X-ray diffraction (XRD) (RINT-2000,

Fig. 1. XRD patterns of $Cd_{3-x-y}Cu_xA_yTeO_6$ (A = Li, Na).

Download English Version:

https://daneshyari.com/en/article/10632766

Download Persian Version:

https://daneshyari.com/article/10632766

Daneshyari.com