

Available online at www.sciencedirect.com

Solid State Sciences 7 (2005) 1070–1073

Anion and cation disorder in $[CN_3H_6]\cdot (TaF_6)$

M.A. Saada a,b, A. Hémon-Ribaud A, M. Leblanc A, V. Maisonneuve a,*

^a Laboratoire des oxydes et fluorures, UMR 6010 CNRS, faculté des sciences et techniques, Université du Maine, Avenue O. Messiaen, 72085 Le Mans Cedex 9, France

^b Laboratoire de chimie inorganique et structurale, faculté des sciences de Bizerte, 7021 Jarzouna, Tunisie

Received 2 April 2004; accepted 25 April 2005

Available online 1 June 2005

Abstract

A new guanidinium fluoride tantalate, $[CN_3H_6]\cdot(TaF_6)$, crystallises at 50 °C from a solution of Ta_2O_5 in 40% aqueous HF and of guanidinium chloride. The structure is rhombohedral, $R\bar{3}m$ space group, with the equivalent hexagonal cell $a_H=8.647(1)$ Å, $c_H=8.507(2)$ Å, Z=3 and R=0.029, $R_w=0.077$ for 312 reflections. The three-dimensional network is built up from parallel $(0001)_H$ layers $\infty([CN_3H_6]F_6)^{5-}$ between which tantalum atoms are inserted. These tantalum atoms, in 3a sites, adopt an octahedral coordination with $\langle d_{Ta-F} \rangle = 1.894(7)$ Å. $\langle TaF_6 \rangle^{-}$ anions are disordered over $\langle TaF_6 \rangle^{-}$ anions are disordered over centrosymmetric positions; site occupancy of fluoride and nitrogen sites is fifty per cent.

Keywords: Hybrid fluoride; Guanidine; Tantalate; X-ray diffraction

1. Introduction

In the search of open structures in fluorides, high valence cations, Zr^{+IV} and Ta^{+V} , were recently examined and associated with amine cations in fluoride solutions [1–3]. Only one 3D open framework was evidenced in a guanidinium zirconate, $(H_3O)\cdot[CN_3H_6]_5\cdot(ZrF_5)_6$ [4], while numerous phases with isolated fluoride polyanions were obtained [5–8]. Then, the study of the Ta_2O_5 -guanidine-aqueous HF system was undertaken over large concentration domains of the starting materials at low crystallisation temperatures. One new phase, which exhibits anion and cation disorder, was evidenced; it is reported here.

2. Experimental

Ta₂O₅ powder (1 g) was first dissolved under stirring in 40% aqueous HF (40 ml) at 80 °C during 4–5 h. After cool-

ing to room temperature, guanidinium chloride (0.191 g) was added. Single crystals of $[CN_3H_6]\cdot(TaF_6)$, which are moisture sensitive, were grown by the slow evaporation of the solution at 50 °C over 2 days.

Truncated (0001)_H platelets were selected by optical examination and single crystal diffraction data were obtained on a Siemens AED2 four-circle diffractometer.

3. Structure determination

Crystal data and the conditions of the intensity measurements are reported in Table 1 for [CN₃H₆]·(TaF₆). Absorption effects were corrected by the Gauss method. The structure was determined in the equivalent hexagonal cell by direct methods using SHELXS-86 [9] and refined with SHELXL-97 [10]. The rhombohedral cell parameters are $a_R = 5.742(1) \text{ Å}$, $\alpha_R = 97.17(2)^\circ$, $V_R = 183.7(1) \text{ Å}^3$.

One heavy atom position was found in 3a special position (0, 0, 0) of $R\bar{3}m$ space group with TREF option of SHELXS-86 and was attributed to Ta. Then, successive refinements and Fourier difference maps allowed to locate F(1), F(2), N in 18h positions with a fifty per cent site occupancy and C in

^{*} Corresponding author. Tel.: +33 2 43 83 35 61; Fax: +33 2 43 83 35 06. *E-mail address:* vincent.maisonneuve@univ-lemans.fr
(V. Maisonneuve).

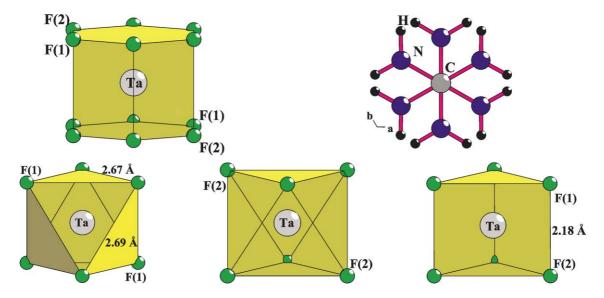


Fig. 1. View of the disordered environment of tantalum (top left) or carbon (top right) atoms in $[CN_3H_6]$ - (TaF_6) ; possible orientations of the resulting $(TaF_6)^-$ octahedra (bottom left and center) and representation of one possible orientation of a triangular $(TaF_6)^-$ prism (bottom right).

Table 1 Crystallographic data of [CN₃H₆]·(TaF₆)

erystanographic data of [efv3116] (12	11 6)
Molar weight (g·mol ⁻¹)	355.02
Crystal size (mm ³)	$0.19 \times 0.19 \times 0.09$
Crystal system, space group	Rhombohedral, R3m
a _H (Å)	8.647(1)
c_{H} (Å)	8.507(2)
$V(Å^3), Z$	550.9(3), 3
$\rho_{\rm calc} (\text{g} \cdot \text{cm}^{-3})$	3.21
Temperature (K)	298
Four circle diffractometer	Siemens AED2
Monochromator	graphite
2θ range (°)	2–70
Reflections measured/unique/used	1080/316/312
$(I > 2\sigma(I))$	
(hkl) limits (two centric	$ h \le 13; k \le 13; l \le 13$
independent sets in 3)	
$R_{ m int}$	0.056
Scan mode	$\omega - 2\theta$
Absorption correction, A_{\min} , A_{\max}	Gaussian, 0.137, 0.299
Parameters refined (on F ²)	22
${}^{a}R/{}^{b}R_{w}$	0.029/0.077
Goodness of fit	1.13
Weighting scheme	$1/[\sigma^2(F_0^2 + (0.0515p)^2 + 0.38P]$
$(p = [F_0^2 + 2F_c^2]/3)$, - 0
Residues of Fourier difference	1.2, -1.5
$(e Å^{-3})$	
$\frac{a}{R} = \sum F_0 - F_c / \sum F_0 ;$ $\sum w(F_0^2)^2]^{1/2}.$	b $R_w = \sum [w(F_0 ^2 - F_c ^2)^2/$

3b (R=0.15). These atoms were differentiated from bond distance considerations. It was recognised here that a disorder affected the fluorine and nitrogen atom positions: the F(1)–F(2) distance was very short (2.18 Å) and it was found that F(1) and F(2) positions were related by a mirror plane at z=0 (Fig. 1). Similarly, two CN_3 groups were found to be related by a symmetry centre located on carbon atom.

Table 2 Atomic coordinates, site occupancy and equivalent atomic displacement parameters in $[CN_3H_6]$ - (TaF_6)

Atom	Site	τ	х	у	Z	$B_{\rm eq} (\mathring{\rm A}^2)$
Ta	3a	1	0	0	0	2.25(1)
F(1)	18h	1/2	0.1030(5)	-x	0.1292(8)	4.2(1)
F(2)	18h	1/2	x(F(1))	-x	-z(F(1))	B(F(1))
C	3b	1	0	0	1/2	2.3(1)
N	18h	1/2	0.0884(8)	-x	0.492(2)	3.5(2)

Table 3 Anisotropic displacement parameters in $[CN_3H_6] \cdot (TaF_6)$

Atom	$U_{11} = U_{22}$	U_{33}	$U_{23} = -U_{13}$	U_{12}
Ta	0.0187(2)	0.0480(3)	0	$U_{11}/2$
F(1), F(2)	0.048(3)	0.073(4)	-0.006(14)	0.032(3)
C	0.025(3)	0.038(5)	0	$U_{11}/2$
N	0.037(4)	0.065(6)	0.002(2)	0.025(5)

Table 4
Selected inter-atomic distances (Å) and angles (°) in [CN₃H₆]·(TaF₆)

6 × Ta–F(1,2)	1.894(7)	$3 \times C-N$	1.33(1)
		$2 \times N \cdots F(1)$	3.02(1)
		$2 \times N \cdots F(2)$	3.21(1)
		$1 \times N \cdots F(1)$	3.09(2)
		$1 \times N \cdots F(1)$	3.23(2)
$6 \times F(1,2) - F(1,2)$	2.67(1)		
$6 \times F(1,2) - F(1,2)$	2.69(2)	$3 \times N$ –C–N	119.0(4)

Consequently, the atomic coordinates of F(1) and F(2) were constrained, $x_{F(1)} = x_{F(2)}$, $z_{F(1)} = -z_{F(2)}$ (Table 2), together with their anisotropic thermal motion parameters (Table 3). Hydrogen atom position was found from a difference Fourier map but was not included in the refinement.

The non-centrosymmetric R3m and R32 space groups were tested. The preceding disorder was maintained and

Download English Version:

https://daneshyari.com/en/article/10636724

Download Persian Version:

https://daneshyari.com/article/10636724

Daneshyari.com