

Available online at www.sciencedirect.com

MATERIALS CHEMISTRY AND PHYSICS

Materials Chemistry and Physics 93 (2005) 26-30

www.elsevier.com/locate/matchemphys

Low-firing PZN–PFN–PFW relaxor ferroelectric ceramics produced by a reaction-sintering process

Yi-Cheng Liou*, Cheng-Jung Chuang, Yi-Che Shih

Department of Electronic Engineering, Kun-Shan University of Technology, 949 Da Wan Road, TainanHsien 710, Taiwan, ROC

Received 11 October 2004; received in revised form 22 February 2005; accepted 28 February 2005

Abstract

Pb(($Zn_{1/3}Nb_{2/3}$)_{0.16}(Fe_{1/2}Nb_{1/2})_{0.48}(Fe_{2/3}W_{1/3})_{0.36})O₃ (PZFNW) relaxor ferroelectric ceramics produced by a reaction-sintering process of low sintering temperatures were investigated. Without any calcination, the mixture of PbO, $Zn(NO_3)_2$, $Fe(NO_3)_3$, Nb_2O_5 and WO_3 was pressed and sintered directly. PZFNW ceramics of 100% perovskite phase were obtained after sintering at 830–950 °C. A density of 8.66 g cm⁻³ (98.6% of theoretical value) was obtained after sintering at 930 °C for 2 h. Grain sizes of 2–7 and 3–12 μ m were formed after sintering at 830–950 °C for 2 and 4 h, respectively. The dielectric constant for 1 kHz at room temperature increases with sintering temperature and reaches the value of 17,400 at 930 °C due to the increased density and grain size. © 2005 Elsevier B.V. All rights reserved.

Keywords: Ceramics; Sintering; Microstructure; Ferroelectric ceramics

1. Introduction

Because of their high dielectric constants, $Pb(Zn_{1/3}Nb_{2/3})$ O_3 , $Pb(Fe_{1/2}Nb_{1/2})O_3$ and $Pb(Fe_{2/3}W_{1/3})O_3$ have been widely investigated for capacitor application [1-4]. In producing these perovskite ceramics, the stable cubic pyrochlore phase could not be eliminated by the conventional mixedoxide method. Therefore, methods to obtain pyrochlorefree perovskite relaxor ferroelectric ceramics have been widely studied. In the proposed columbite and wolframite routes [5,6], two calcination stages were involved. MgNb₂O₆ columbite and FeNbO₄ wolframite were formed first and followed by formation of perovskite. An effective and simplified method to produce pyrochlore-free Pb(Mg_{1/3}Nb_{2/3})O₃ ceramics was proposed by Liou et al. [7]. A MgNb₂O₆ and PbO mixture was pressed and sintered into Pb(Mg_{1/3}Nb_{2/3})O₃ ceramics. A simplified wolframite route to produce pyrochlorefree Pb(Fe_{1/2}Nb_{1/2})O₃ ceramics was reported by Liou et al. [8]: a mixture of FeNbO₄ and PbO was pressed and sintered. The second calcination and pulverization stages in the

columbite or wolframite route were bypassed in these simplified routes.

A novel mechanochemical processing route has been used to produce $Pb(Zr,Ti)O_3$ and $Pb(Mg_{1/3}Nb_{2/3})O_3$ [9,10]. In this mechanical technique, the powders of the reactants are homogenized and activated in a high-energy vibromill. Several materials such as BaTiO3 and PbTiO3 were prepared by using this process [11–13]. The reaction-sintering process is a simple and effective route to synthesize ceramics. The calcination step is bypassed and the mixture of the raw materials is sintered directly. Kong and Ma [14] proposed Pb(Zr,Ti)O₃ ceramics prepared by sintering the oxide mixture directly. Almost at the same time, Liou et al. [15–19] proposed a reaction-sintering process in preparing Pb(Mg_{1/3}Nb_{2/3})O₃, $Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3$ and $Pb(Fe_{1/2}Nb_{1/2})O_3$ ceramics. These are the first successful syntheses of perovskite relaxor ferroelectric ceramics without having to go through the calcination step or the high-energy milling. Pb(Mg_{1/3}Nb_{2/3})O₃ ceramics with a density of 8.09 g cm⁻³ and a dielectric constant of 19,900 (1 kHz) were obtained. This reaction-sintering process had also been used to produce other complex perovskite relaxor ceramics [20-25]. In the latest studies, we also prepared dense and pure-phased columbite ZnNb2O6

^{*} Corresponding author. Tel.: +886 6 2050521; fax: +886 6 2050523. E-mail address: ycliou@mail.ksut.edu.tw (Y.-C. Liou).

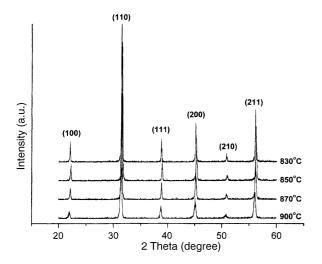


Fig. 1. XRD profiles of PZFNW ceramics sintered at 830–900 °C for 2 h.

and $NiNb_2O_6$ microwave ceramics by this process successfully [26,27].

In this study, Pb(($Zn_{1/3}Nb_{2/3}$)_{0.16}(Fe_{1/2}Nb_{1/2})_{0.48}(Fe_{2/3} W_{1/3})_{0.36})O₃ (PZFNW) perovskite ceramics prepared by the

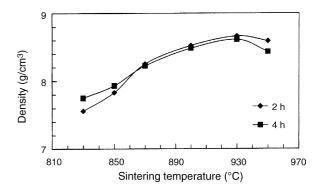


Fig. 2. Variation of the density with sintering temperature of PZFNW ceramics.

reaction-sintering process of low sintering temperatures were investigated.

2. Experimental procedure

 $Pb((Zn_{1/3}Nb_{2/3})_{0.16}(Fe_{1/2}Nb_{1/2})_{0.48}(Fe_{2/3}W_{1/3})_{0.36})O_{3} \\ (PZFNW) \ is \ the \ composition \ investigated \ in \ this \ study. \ All$

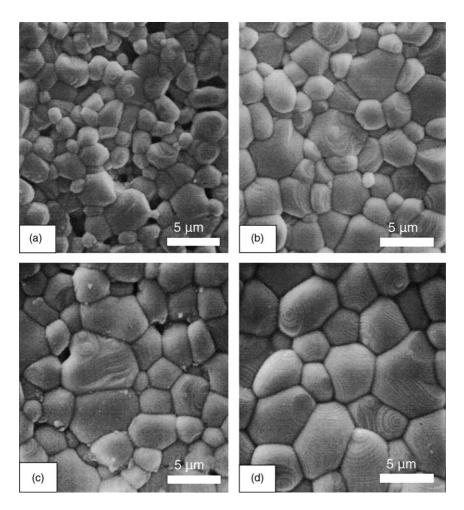


Fig. 3. SEM images of as-fired PZFNW ceramics sintered for 2 h at (a) $830\,^{\circ}$ C, (b) $850\,^{\circ}$ C, (c) $870\,^{\circ}$ C and (d) $900\,^{\circ}$ C.

Download English Version:

https://daneshyari.com/en/article/10638254

Download Persian Version:

https://daneshyari.com/article/10638254

<u>Daneshyari.com</u>