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a b s t r a c t

A hybrid stochastic robust chance-constraint programming (SRCCP) model was developed in this study
for supporting municipal solid waste management under uncertainty. The method improves upon the
existing robust-optimization (RO) and chance-constraint programming (CCP) approaches by allowing
analysis on trade-offs among expected value of the objective function, variation in the value of the objec-
tive function and the risk of violating constraints that contain uncertain parameters. SRCCP could be used
to examine the balance between solution robustness and model robustness, and was especially useful for
analyzing the reliability of satisfying (or risk of violating) system constraints under complex uncertain-
ties. A long-term municipal solid waste management problem was used to demonstrate the applicability
of SRCCP, with violations for capacity constraints being assumed under various significance levels. The
study results demonstrated that a higher system cost may guarantee that waste-management require-
ments and environmental criteria be met, and a lower cost may lead to a higher risk of violating the
related regulations. The proposed SRCCP model could be used by waste managers for identifying desired
waste-management policies under various environmental, economic, and system-reliability constraints
and complex uncertainties.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Municipal solid waste (MSW) management continues to be
a major challenge for urban communities throughout the world
(Huang and Chang, 2003). The rising MSW generation rates,
increasing environmental and health concerns, shrinking waste-
disposal capacities, and varying legislative and political conditions
have significant impacts on selection of best waste-management
practices (Li et al., 2007). Optimization models are effective tools
for analyzing complex interrelationships among various system
components, and provide decision supports for improving cost-
effectiveness of waste-management strategies. However, MSW
management is complicated with a variety of uncertainties that
may be associated with waste generation, transportation, treat-
ment and disposal processes. Such uncertainties could bring
significant difficulties to the formulation of waste-management
models and generation of effective solutions (Huang et al., 1993;
Yeomans et al., 2003). It is thus desired that effective optimization
models be advanced.

∗ Corresponding author at: Environmental Systems Engineering Program, Faculty
of Engineering, University of Regina, Regina, Saskatchewan, Canada S4S 0A2.
Tel.: +1 306 585 4095; fax: +1 306 585 4855.

E-mail address: huangg@iseis.org (G.H. Huang).

Previously, a large number of optimization methodologies have
been proposed for dealing with uncertainties, such as fuzzy,
stochastic, and interval programming methods (Kirca and Erkip,
1988; Zhu and Revelle, 1993; Chang and Wang, 1994, 1995, 1997;
Leimbach, 1996; Li et al., 2007; Chang and Lu, 1997; Chang et
al., 1997; Huang et al., 1992, 1993, 1994, 1995a,b, 2001, 2002,
2009; Chanas and Zielinski, 2000; Zeng et al., 2003, 2004; Zeng
and Trauth, 2005; Qin et al., 2007a; Huang and Qin, 2008a,b).
Among these approaches, the robust optimization (RO) is one of the
stochastic programming methods that can bring risk aversion into
optimization models and find robust solutions to environmental
management problems (Mulvey et al., 1995). In a RO model, uncer-
tain parameters, derived from noisy, incomplete, or erroneous data,
are handled as random variables with discrete distributions. The
major advantages of RO are (i) it integrates goal programming for-
mulations with a scenario-based description of problem data, and
generates a series of solutions that are progressively less sensitive
to realizations of the model data from a scenario set (Mulvey et al.,
1995); (ii) it is especially useful for helping decision makers evalu-
ate trade-offs among the expected value of the objective function,
variation in the value of the objective function and the risk of vio-
lating soft constraints or missing targets in the model. Over the past
decade, RO models were used in many real-world applications, such
as power capacity expansion, matrix balancing, air-force/airline
scheduling, scenario immunization for financial planning, and
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minimum weight structural design (Yu and Li, 2000). Applications
of RO in the environmental field were relatively limited. For exam-
ple, Watkins and Mckinney (1997) applied RO to evaluate trade-offs
among expected cost, cost variability, and system performance and
reliability in water transfer planning and groundwater quality man-
agement, and control the effects of uncertainties. Leung et al. (2007)
developed a robust-optimization model of a multi-site production
planning problem for a multinational lingerie company in Hong
Kong. The robustness and effectiveness of the developed model
were demonstrated by numerical results, and the trade-off between
solution robustness and model robustness was also analyzed.

However, the RO models also have a number of limitations.
Firstly, as a discrete scenario-based approach, the complexities of
RO would increase significantly as the amount of the designed sce-
narios increases (Mulvey et al., 1995). Since the number of scenarios
is proportional to the number of stochastic variables, RO model
can only tackle a limited number of uncertain parameters due to
restrictions of extensive computational requirement. Secondly, the
RO model assumes that the model robustness (i.e. feasibility robust-
ness) is only related to the control constraints. In a RO model, the
constraints are of two major types: structural and control con-
straints. The structural constraints are fixed and free of any noise,
and they are similar to constraints in a deterministic model. The
control constraints are subjected to noisy input data, and they are
similar to constraints of a general model that contains uncertain-
ties. However, in real-world applications, it is also possible that the
structural constraints be subjected to an allowable level of viola-
tions in order to reduce the strictness of resource restrictions or
environmental regulatory criteria. Such a violation may also be
derived from uncertainties or disadvantageous system conditions.
The conventional RO model cannot deal with such a complexity.

Chance-constrained programming (CCP) is another stochastic
programming approach that can effectively reflect the reliabil-
ity of satisfying (or risk of violating) system constraints under
uncertainty. This method does not require that all of the con-
straints are strictly satisfied. Instead, they can be satisfied in a
proportion of cases with given probabilities (Loucks et al., 1981).
Many applications of CCP methods to environmental manage-
ment problems were reported (Ellis et al., 1985, 1986; Morgan et
al., 1993; Huang, 1998; Huang et al., 2001; Liu et al., 2003). For
examples, Huang (1998) developed an inexact chance-constrained
programming model for the water quality management within
an agricultural system. Liu et al. (2000) developed a hybrid
inexact chance-constrained mixed-integer linear programming
method for non-renewable energy resources management under
uncertainty, where the system objective was to maximize the eco-
nomic return subject to constraints of resources availability and
environmental regulations. Li et al. (2007) applied an inexact two-
stage chance-constrained linear programming method for planning
waste-management systems, where uncertainties were presented
as both probability distributions and discrete intervals. These stud-
ies demonstrated that major advantages of CCP are (i) it could be
used to convert a stochastic programming model into an equiv-
alent deterministic version, and thus significantly reduce system
complexities; (ii) it is especially useful for helping the decision mak-
ers make their decisions based on given probabilities of constraint
violations; (iii) it could incorporate other uncertain optimization
methods within a general framework. The above facts demon-
strated that CCP possessed good practicability, and was easy to be
integrated with other optimization methods.

Based on the above-mentioned facts, it is revealed that the
RO is useful in analyzing the trade-offs among expected values
of the objective function, variation in the value of the objective
function and the risk of violating control constraints, but is weak
in handling large-scenario problems and risk violations in struc-
tural constraints. CCP could be used to address risk violations for

structural constraints with less intensive computational efforts, but
is less capable of handling the trade-offs among multiple objec-
tives. The two methods have varied strengths and weaknesses,
with a potential for compensating each other when they are inte-
grated within a general framework. Therefore, the objective of
this research is to develop a stochastic robust chance-constrained
programming (SRCCP) model for supporting MSW management.
SRCCP combines advantages of the RO and CCP, and is effective
in dealing with both model and solution robustness, and reflect-
ing risks of constraints’ violations. The compromise programming
technique and the multi-objective simplex method will be used
to solve the developed model. A solid waste management case
will be presented to demonstrate the applicability of the proposed
methodology.

2. Modeling formulation

2.1. Robust optimization

Robust optimization (RO) was firstly proposed by Mulvey et al.
(1995). It is a method that can tackle the decision makers’ favored
risk aversion or service-level function, and yield a series of solu-
tions that are progressively less sensitive to realizations of the data
in a scenario set (Leung et al., 2007). The concept of “robust” herein
has two main implications: solution robustness and model robust-
ness. If the optimal solution provided by a robust-optimization
model remains “close” to the optimal even if input data change,
it is regarded as solution robustness. If solution is “almost” feasi-
ble for small changes in the input data, this is regarded as model
robustness (Watkins and Mckinney, 1997). The model structure and
definition of a RO model is different from that of a general opti-
mization model. Two types of constraints are incorporated in a RO
model: structural constraints and control constraints. Correspond-
ingly, a RO model has two sets of variables, structural decision
variables and control variables. The structural decision variables
were similar with decision variable of the general model, and con-
trol variables were similar with uncertain variables, instead of the
decision variables. The structural constraints are formulated follow-
ing the concept of linear programming and their input data are free
of any noise. Compared with the structural constraints, the control
constraints are taken as an auxiliary constraints influenced by noisy
data. The structural decision variables cannot be adjusted once a
specific realization of the data has been observed, and the control
variables are subjected to adjustment once the uncertain parame-
ters are observed (Watkins and Mckinney, 1997; Leung et al., 2007).
Let x ∈ {�}n×1 be a vector of the structural decision variables, and
y ∈ {�}n×1 be a vector of control variables, where � denotes a set of
real numbers and n is the dimension. A robust-optimization model
can be written as follows (Mulvey et al., 1995):

Minimize cTx + dTy (1a)

Subject to:

Ax ≤ B (1b)

Cx + Dy = E (1c)

x, y ≥ 0 (1d)

where cT ∈ {�}m×n, dT ∈ {�}m×n, A ∈ {�}m×n, B ∈ {�}m×1, C ∈ {�}m×n,
D ∈ {�}m×n, E ∈ {�}m×1; � is a set of real numbers; m and n are dimen-
sions. Eq. (1b) is the structural constraint whose coefficients are
fixed and free of noise, while Eq. (1c) is the control constraint whose
coefficients are subject to noise. Eq. (1d) ensures non-negative vec-
tors.

In an OP model, the uncertain variables will present in the form
of deterministic values under different scenarios, such as d, y, C,
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