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We analyze the orbital angular momentum (OAM) crosstalk of single photons propagation through low-order
atmospheric turbulence. The probability models of the orbital angular momentum crosstalk for single photons
propagation in the channel with the non-Kolmogorov turbulence tilt, coma, and astigmatism and defocus
aberration have been established. It is found, for α=11/3, that the turbulent tilt is the dominant aberration
which causes the orbital angular momentum crosstalk, the coma is second and the astigmatism is third, but
the defocus aberration has no impact on OAM. The results also indicate that the regularities of orbital angular
momentum crosstalk caused by the tilt, the coma and the astigmatism are almost the same, respectively. The
crosstalk probability of the orbital angular momentum increases as the azimuth mode index p of Laguerre–
Gaussian (LG) beam increases, the turbulent strength Cn

2 enhances, the orbital angular momentum quantum
number rises, the diameter of circular sampling aperture D and the channel zenith angle θ increase.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Several models have recently been established to use the orbital
angular momentum (OAM) states of light as a basis set for impressing
quantum information onto single-photon light field propagation in
turbulence atmosphere [1–4]. A keymotivation for this idea is that the
OAM states provide an infinite orthonormal basis set for describing
the transverse structure of the beam [5]. However, the spatial-
structure nature of OAM implies that it may be susceptible to
atmospheric turbulence [3]. Many investigation results for the effects
of atmospheric turbulence on the OAM states of photons propagation
in atmosphere optical communication channel have been reported,
such as, C. Paterson [3,4] investigated the effect of Kolmogorov
atmospheric turbulence aberrations on free-space optical communi-
cation using angular momentum states of single photons with the
pure phase perturbation approximation of turbulent aberrations. J.A.
Anguita et al. [6] numerically analyzed the effects of atmospheric
turbulence on the multichannel free-space optical communication
system based on OAM-carrying beams and find that turbulence
induces attenuation and crosstalk among channels. A.T. Glenn et al. [1]
analyzed the influence of atmospheric turbulence on propagation of
quantum states of light carrying orbital angular momentum and given
a result that quantifies the rate at which quantum information
encoded the OAM states of individual photons is lost as a result of
propagation through atmospheric turbulence. Zhang et al. [2]

modeled the effects of atmospheric turbulence tilt, defocus, astigma-
tism and coma aberrations on the orbital angular momentum
measurement probability of photons propagating in weak turbulent
regime.

In the currentpaper,wemodel the crosstalk probability of theorbital
angular momentum (OAM) for photons propagation through the low-
order non-Kolmogorov atmospheric turbulence based on the Zernike
polynomial expansion of turbulence-induced phase aberrations.

In Section2wemodel the crosstalk probability of the orbital angular
momentum states for single photons propagation through the tilt,
coma, astigmatism and defocus aberration non-Kolmogorov turbulent
channel. In Section 3 we analyze the effects of the tilt, coma,
astigmatism and defocus aberration on orbital angular momentum
(OAM) crosstalk by numerical simulations and conclusions are given in
Section 4.

2. Crosstalk probabilities of orbital angular momentum states

The modesLGl0,p(r,φ,z)of Gauss–Laguerre (LG) beam propagating
in a free-space have the eigenfunction of orbital angular momentum
operator L̂z = −iħ∂= ∂φ[7]. Therefore, we make use of the LG beam
modes to study the Crosstalk effects of the orbital angular momentum
for the transmitted photons in a turbulent channel. Using cylindrical
polar coordinates(r,φ,z) and defining the z-axis as the propagation
direction along the intensity centre of the beam. The normalized LGl0,p

model at z is given by [7]

LGl0 ;p
rφzð Þ = Rl0 ;p

r; zð Þ exp il0φð Þffiffiffiffiffiffi
2π

p exp −i 2p + l0j j + 1ð Þδ½ � ð1Þ
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where the parameters l0 and p are the radial and azimuthal mode
indices respectively. l0 is also the orbital angular momentum quantum
number for photon in the mode. φ is the azimuthal angle, r is the
radial cylindrical coordinate and δ is the Gouy phase. The radial
orthonormal basis functions Rl0,p(r) of the field distribution of the LG
beam model with eigenvalues of orbital angular momentum lz= l0ħ
are of the form [2]

Rl0 ;p
r; zð Þ = 1

w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p!

p + l0j jð Þ!

s
r
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r2
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2w2
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exp − ikr2
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 !

ð2Þ

where Lp
l0(⋅) is the generalized Laguerre polynomials. w =

w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + z=zRð Þ2

q
is the spot size of bean, zR = 1

2 kw
2
0 is Rayleigh

distance, w0 is beam waist and R=z[1+(zR/z)2] is phase front radius
of curvature.

Using the Rytov approximation [8], the LG model which is propa-
gation in the weak turbulence regime and at z can be represented as

LGl;p r;φ; zð Þ = LGl0 ;p
r;φ; zð Þexp iS r;φ; zð Þ½ � ð3Þ

here S(r,φ,z)=a1+Stilt+Sdefo+Sasti+Scoma⋯ being the total complex
phase perturbation of the field due to random inhomogeneous along the
propagation channel [9,10], a1 being the constant phase, Stilt(r,φ)=
2a2r cos φ+2a3r sin φ being the turbulence Z-tilt aberration,
Sdefo r;φð Þ = a4

ffiffiffi
3

p
2r2−1
� �

being the turbulence defocus aberra-
tion, Sasti r;φð Þ = a5

ffiffiffi
6

p
r2 sin2φ + a6

ffiffiffi
6

p
r2 cos2φ

h i
being the turbu-

lence astigmatism aberration, Scoma r;φð Þ = a7
ffiffiffi
8

p
3r3−2r
� �

sinφ +
a8

ffiffiffi
8

p
3r3−2r
� �

cosφ being turbulence coma aberration, ai being the
expansion coefficient of the Zernike polynomials [11,12] and D being
the diameter of circular sampling aperture.

As the beam propagates through the atmosphere, the effect of the
refractive index fluctuations perturbs the complex amplitude of the
wave so that it is no longer guaranteed to be in the original eigenstate
of orbital angular momentum. The resulting wave now can be written
as a superposition of eigenstates [7].

LG r;φ; zð Þ = ∑
p
∑
l
al;p zð ÞLGl;p r;φ; zð Þ ð4Þ

where al,p(z) is the expansion coefficient,

al;p zð Þ = ∬R�
l;p ρð Þ exp −ilφð Þffiffiffiffiffiffi

2π
p exp i 2p + lj j + 1ð Þδ½ �LG ρ;φ; zð Þρdρdφ ð5Þ

here * denotes complex conjugate.
The measurement probability of the orbital angular momentum

lz= lħ is obtained by summing the probability associated with that
eigenvalue and taking the ensemble average over the turbulent
aberrations [3,4]

P lð Þ = ∫∬ LGT r;φ′; z
� �

LG r;φ; zð Þ
D E

atm
rdr

exp il φ−φ′ð Þ½ �ffiffiffiffiffiffi
2π

p dφ′dφ ð6Þ

where 〈•〉atm denotes the ensemble average of turbulent atmosphere.
As in Ref. [3,4], it is assumed that the statistics of atmosphere–

turbulence aberration is isotropic and since the beam profile at launch
was rotationally symmetric, then the field correlation be written as

CLG r;Δφ; zð Þ = LG* r;0; zð ÞLG r;Δφ; zð Þh i ð7Þ

where Δφ=φ−φ′. In Eq. (6), making the substitution φ=Δφ+φ′,
we have the orbital angular momentum measurement probability

P lð Þ = ∬∬CLG r;Δφ; zð Þrdr exp ilΔφ½ �dΔφ ð8Þ

Substituting Eq. (3) into Eq. (8) gives

CLG r;Δφ; zð Þ = Rl0 ;p
r; zð Þ
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2
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� 	
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ð9Þ

where DS(r,Δφ)=DS(|2r sin(Δφ/2)|) is the wave structure function.
By Eq. (9), we rewrite Eq. (8) as

P lð Þ = ∫
∞
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2.1. Turbulent model

In this paper, we consider a theoretical power spectrum model
that describes non-Kolmogorov optical turbulence, which obeys a
power law [14]

ϕn κð Þ = A αð ÞC̃2
n zð Þκα ð11Þ

where the term A(α) and C̃
2
n zð Þ are defined by

A αð Þ = 1
4π2 Γ α−1ð Þcos απ

2

� �
; 3b α b 4 ð12Þ

C̃
2
n zð Þ = γC2

n zð Þ ð13Þ

,and γ is a constant equal to unity when α=11/3, but otherwise has
units m−α+11/3, Cn2(z) is the refractive index structure parameter of
the slant channel. One of the most widely used models is the
Hufnagel–Velly model described by [8,9]

C2
n zcosθð Þ = 0:00594 v=27ð Þ2 zcosθ� 10−5

� �10
exp −zcosθ= 1000ð Þ

+ 2:7 × 10−16exp −zcosθ= 1500ð Þ

+ C2
n 0ð Þexp −zcosθ= 100ð Þ ð14Þ

here z cos θ=h is height of the receiver, v=21m/s is the root-mean-
square wind speed, Cn2(0) is the refractive index structural character-
istic of ground and θ is the zenith angle.

For non-Kolmogorov optical turbulence, the Zernike-coefficient
variances are given by [15]
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where Γ(a) denotes the Gamma function, r̃0 is a quantity analogous to
Fried's parameter r0 that reduces to r0 for the case of α=11/3.
r̃0 = 2:1ρ̃0. ρ̃0 is a quantity analogous to coherence length ρ0 that
reduces to ρ0 for the case of α=11/3. And ρ̃0 is given by [16]
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