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Abstract

A basis set expansion is performed to find the eigenvalues and wave functions for an electron on a toroidal surface T
subject to a constant magnetic field in an arbitrary direction. The evolution of several low-lying states as a function of
field strength and field orientation is reported, and a procedure to extend the results to include two-body Coulomb

matrix elements on 77 is presented.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Quantum dots with novel geometries have
spurred considerable experimental and theoretical
interest because of their potential applications to
nanoscience. Ring and toroidal structures in
particular have been the focus of substantial effort
because their topology makes it possible to explore
Ahranov-Bohm and interesting transport phe-
nomena [1-4]. Toroidal InGaAs devices have been
fabricated [5-8] and modelled, [9] and toroidal
carbon nanotube structures studied by several
groups [4,10,11].
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This work is concerned with the evolution of
one-electron wave functions on 72 in response to a
static magnetic field in an arbitrary direction. The
problem of toroidal states in a magnetic field has
been studied with various levels of mathematical
sophistication. Onofri [12] has employed the
holomorphic gauge to study Landau levels on a
torus defined by a strip with appropriate boundary
conditions and Narnhofer has analyzed the same
in the context of Weyl algebras [13]. Here, the aim
is to do the problem with standard methodology:
develop a Schrédinger equation inclusive of sur-
face curvature, evaluate the vector potential on
that surface, and proceed to diagonalize the
resulting Hamiltonian matrix.
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As noted in Ref. [14], ideally one would like to
solve the N-electron case, but the single particle
problem is generally an important first step, and
while the N electron system on flat and spherical
surfaces has been studied [15-20], the torus
presents its own difficulties. In an effort to
partially address this issue, the evaluation of
Coulombic matrix elements on 7T is also discussed
here.

This paper is organized as follows: in Section 2,
the Schrédinger equation for an electron on a
toroidal surface in the presence of a static
magnetic field is derived. In Section 3, a brief
exposition on the basis set employed to generate
observables is presented. Section 4 gives results.
Section 5 develops the scheme by which this work
can be extended to the two-electron problem on
T2, and Section 6 is reserved for conclusions.

2. Formalism
The geometry of a toroidal surface of major

radius R and minor radius ¢ may be parameterized
by

r(0, ) = W(0)p + asin Ok (1)
with

W =R+ acos0, (2)
p = cos @i + sin ¢j. 3)
The differential of Eq. (1)
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with 6@ = —sinfp + cos 0k yields for the metric
elements g;; on T’
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The integration measure and surface gradient that
follow from Egs. (5) and (6) become
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The Schroédinger equation with the minimal
prescription for inclusion of a vector potential A is
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The magnetic field under consideration will take
the form

B = Bji + Bok, (10)

which by symmetry comprises the general case. In
the Coulomb gauge, the vector potential A(6, ¢) =
%B x r expressed in surface variables reduces to

A(0, ¢) = 3[B;(W sin ¢ cos 0 + asin® sin ¢)0
+ (BoW — Bjasin 0 cos ¢)]¢
+ B (F sin ¢ sin § — a cos 6'sin 0 sin ¢()hl)

with n= ¢ x 0. The normal component of A
contributes a quadratic term to the Hamiltonian
but leads to no differentiations in the coordinate
normal to the surface as per Eq. (8). There is a
wealth of literature concerning curvature effects
when a particle is constrained to a two-dimen-
sional surface in three-space [21-38], including
some dealing with the torus specifically [39], but
the scope of this work will remain restricted to
study of the Hamiltonian given by Eq. (9).

The Schrodinger equation (spin splitting will be
neglected throughout this work) is more simply
expressed by first defining

o=a/R,
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