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a b s t r a c t

The attributable risk (AR) measures the contribution of a particular risk factor to a disease,
and allows estimation of disease rates specific to that risk. While previous studies consider
variability in ARs over demographic categories, this paper considers the extent of spatial
variability in ARs estimated from multilevel data with confounders both at individual
and geographic levels. A case study considers the AR for diabetes in relation to elevated
BMI, and area rates for diabetes attributable to excess weight. Contextual adjustment
includes known area variables, and unobserved spatially clustered influences, while spatial
heterogeneity (effect modification) is considered in terms of varying effects of elevated BMI
by neighbourhood deprivation category. The application is to patient register data in
London, with clear evidence of spatial variation in ARs, and in small area diabetes rates
attributable to excess weight.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The attributable risk (AR) seeks to quantify the propor-
tion of disease due to a particular risk factor, which may be
termed the focus risk factor (Uter and Pfahlberg, 2001;
Benichou, 2001). Other terms include the attributable frac-
tion, population attributable risk, and population attributa-
ble fraction. The AR measures impacts of risk factors on
disease levels, taking into account both associations (i.e.
relative risk) between disease and exposure, and the pro-
portion of subjects exposed. Using attributable risks one
may ascertain disease rates and burdens specific to a par-
ticular risk factor (Steenland and Armstrong, 2006; Ezzati
et al., 2006; Gefeller, 1995). With a risk factor expressed
in binary form, and PE as the proportion of subjects
exposed, a point estimator of the attributable risk is

½PEðRR � 1Þ�=½PEðRR � 1Þ þ 1�; ð1aÞ

where RR is the relative risk for those exposed as compared
to those unexposed. The latter should be adjusted for

confounders (Darrow and Steenland, 2011; Benichou,
2001; Steenland and Armstrong, 2006). Another estimator is

PEjDðRR � 1Þ=RR ¼ PEjDð1� 1=RRÞ; ð1bÞ

where PE|D is the proportion of diseased subjects exposed.
Variations in attributable risks over demographic cate-

gories (e.g. age categories, ethnic groups) have been con-
sidered in some studies (e.g. Okosun and Boltri, 2006;
Oteng-Ntim et al., 2013), and contributions to the Global
Burden of Disease study such as Ferrari et al., 2014) use
the estimator (1a) to derive attributable risks varying both
by demographic group and over nations. Variations in
attributable risks at subnational geographic scales, down
to relatively small area scale, and the underlying method-
ological issues, have, however, been little explored. One
approach (Tanuseputro et al., 2005) assumes confounder
adjusted relative risks based on national epidemiological
surveys to be transferable across lower scale geographic
settings. However, relative risks may vary across such geo-
graphic settings. Estimation of ARs from multilevel data,
after adjustment for contextual risks, either measured
neighbourhood confounders (e.g. area deprivation), or
unmeasured spatially structured risk factors, has not been
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considered in previous studies. Allowance for spatial
heterogeneity (e.g. effects of the focus risk varying by area
type) is also not considered in existing studies.

The present paper is particularly concerned with the AR
for diabetes in relation to excess weight. The association
between elevated bodyweight and diabetes risk has been
explored in many studies based on patient level data,
either using categorical forms of the bodyweight predictor
(Ganz et al., 2014; Field et al., 2001), or with linear regres-
sion of diabetes risk on BMI (Wong et al., 2014). However, a
few multilevel studies have also considered spatial aspects
of rising obesity prevalence or diabetes (e.g. Krokstad et al.,
2013; Liu and Núñez, 2014), and a multilevel perspective
on obesity is advocated by Huang et al. (2009). Taking
account of geographic context is important as an increas-
ing number of studies link obesity (and hence diabetes)
to environmental influences (Hill and Peters, 1998).

The present paper seeks to assess the potential impor-
tance of spatial effects (spatial heterogeneity, spatial clus-
tering) in the estimation of context sensitive attributable
risks, and their relevance in estimating area disease rates
specific to particular risk factors, specifically small area
diabetes rates attributable to excess weight. Spatial varia-
tion in the latter is particularly relevant for policy purpos-
es. A subsidiary aim is to demonstrate the utility of a
Bayesian approach to estimation using a logistic regression
method in which ARs are based on a ratio estimator, while
also selecting out significant influences on the disease out-
come using Bayesian variable selection.

1.1. Attributable risks in a multilevel setting

The application in this paper considers estimation of
ARs for diabetes prevalence in relation to excess weight,
using multilevel data from health registers or health sur-
veys. Oriented to such data, the paper considers adjust-
ment for both patient confounders (e.g. other diseases,
age, ethnicity), and observed and unobserved neighbour-
hood (contextual) confounders.

Multilevel data presupposes subjects nested within
clusters, and observations for subjects within clusters
areas may be correlated (Chen and Dey, 2003). As men-
tioned by Diez-Roux et al. (1997) ‘‘correlation between
individuals within neighborhoods . . . may persist even
after controlling for [observed] individual level and neigh-
borhood level variables.’’ Existing multilevel disease risk
models generally consider spatial effects in terms of (a)
effects of observed area variables, and (b) randomly vary-
ing intercepts (typically assumed iid) over areas to repre-
sent unobserved area influences. Contextual effects are
then assessed in terms of the relative proportion of varia-
tion explained by areas (e.g. Pickett and Pearl, 2001;
Merlo et al., 2006). Some analyses go beyond this to allow
for spatial clustering in unmeasured neighbourhood influ-
ences on disease levels (Dasgupta et al., 2014; Xu, 2014;
Chaix et al., 2005).

However, as discussed in Goodchild (2011), spatial
effects encompass spatial heterogeneity as well as spatial
clustering. There is an extensive literature on spatially
varying regression relationships with both Bayesian
approaches (Assunçao, 2003), and classical approaches

often based on generalized weighted regression
(Fotheringham et al., 2003). This paper considers a
relatively simple form of heterogeneity in regression
effects, namely varying impacts of individual risk factors
according to area type. In terms of the framework provided
by Anselin (2010, p. 6) the form of heterogeneity consid-
ered here involves discrete heterogeneity, or spatial
regimes.

Such heterogeneity can also be seen as a spatially
defined form of effect modification or ‘‘hazard heterogene-
ity’’ (Ezzati et al., 2006, p. 245), applicable ‘‘when the
assumption of constant relative risk [is] not appropriate’’.
The potential importance of effect modification in estimat-
ing ARs is considered by Flegal et al. (2004).

Specifically the analysis below accordingly considers
estimation of ARs via multilevel models that admit the
potential for (a) spatially correlated but unmeasured risk
factors, and (b) neighbourhood group heterogeneity in
impacts of bodyweight on diabetes. Regarding the first fea-
ture, and as discussed above, multilevel data presupposes
subjects nested within clusters, and observations or resi-
duals for subjects within clusters areas may be correlated
(Chen and Dey, 2003). When areas constitute the clusters,
residuals may show spatial correlation.

There is an extensive literature on modeling spatially
correlated residual effects on health outcomes. Such spatial
effects often proxy unobserved risk factors (e.g. environ-
mental or cultural), which vary smoothly over space
(Best, 1999). As mentioned by Wakefield et al. (2000),
modeling of spatially correlated errors, denoted vj

(j = 1,. . .,J) for J areas, may proceed by initially specifying
either the joint multivariate distribution of the vector
v = (v1,. . .,vJ), or the univariate density of each areas error,
vj, conditional on errors in other areas. A widely adopted
scheme known as the convolution prior, but with potential
identification issues, involves an intrinsic autoregressive
effect (Besag et al., 1991) combined with an iid (non-spa-
tial) effect. Lee (2011) compares the properties of alterna-
tive conditional priors for spatial errors, and recommends
instead the method of Leroux et al. (1999), on the grounds
of including a measure of spatial dependence, and in pro-
viding a rational form of conditional variance.

Regarding spatial heterogeneity, a focus here is on the
potential interaction between area deprivation category
and the effects of overweight, a cross-level interaction in
the terminology of multilevel analysis. Possible mechan-
isms for such interaction are suggested by the large num-
ber of studies linking obesity (and diabetes itself) to
environmental influences, such as access to healthy food
and exercise opportunities (Hill and Peters, 1998; Feng
et al., 2012; Salois, 2012). For example, obesity may be
related to aspects of food environment (e.g. density of
facility types, such as fast food outlets) which adversely
influence diet, with less healthy food environments char-
acterized by high consumption of processed food, high in
fat and sugar (Lake and Townshend, 2006). Less healthy
food environments tend to be in less affluent areas, that
is areas with high deprivation (Morland et al., 2002).
Exercise has independent effects on diabetes as well as
through its effect on obesity (Kriska et al., 2003; De Feo
et al., 2006), and exercise access is typically lower in
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