
A Bayesian hierarchical model of nontraumatic lower-extremity
amputation rates q

Xiaoyi Min a, Dongchu Sun a,*, Zhuoqiong He a, Mario Schootman b

a University of Missouri-Columbia, USA
b Washington University – St. Louis, USA

a r t i c l e i n f o

Keywords:
Linear model
Lower-extremity amputations
Diabetes patient

a b s t r a c t

A Bayesian hierarchical generalized linear model is used to estimate the risk of lower-
extremity amputations (LEA) among diabetes patients from different counties in the state
of Missouri. The model includes fixed age effects, fixed gender effect, random geographic
effects, and spatial correlations between neighboring counties. The computation is done
by Gibbs sampling using OPENBUGS. DIC (Deviance Information Criterion) is used as a cri-
terion of goodness of fit to examine age effects, gender effect, and spatial correlations
among counties in the risks of having LEAs. The Bayesian estimates are also shown to be
quite robust in terms of choices of hyper-parameters.

� 2010 Published by Elsevier Ltd.

1. Introduction

The nontraumatic lower-extremity amputation (LEA) is a
devastating complication of diabetes. According to a report
of the National Diabetes Advisory Board (1980), as much as
15% of persons with diabetes will have such amputations
in their life time. About 50% of all LEAs are performed in per-
sons with diabetes. Also see Most and Sinnock (1983). Peo-
ple with diabetes are 10–20 times more likely to have
LEAs than those without diabetes. From Sugerman et al.
(1998), people age 65 and older account for about 55% of
patients with diabetes who had nontraumatic LEAs. Consid-
ering the geographical variation of diabetes-related LEAs,
Wrobel et al. (2001) showed that the incidence of LEAs var-
ied ninefold among 306 large hospital regions in the US.
However, the variation of LEAs among smaller geographic
areas, such as counties, has not been studied much yet,
and it is also a major interest of this paper. Specifically, the
LEAs data for 100,280 diabetes patients age over 65 from

the state of Missouri are analyzed with regard to their gen-
der, age, and the counties of beneficiary.

The largest difficulty that traditional methods have when
solving such small-area estimation problems is the rela-
tively small sample sizes for subareas such as counties com-
pared to the large overall sample size. First, some units may
have no observations, which makes it impossible to give
estimates. For example, in the dataset being studied, there
are no male patients aged 90 or more for 3 of 115 counties.
Moreover, when subarea sample sizes are small, rates
acquired by simply dividing can be non-informative or mis-
leading as the variability will be large, and it is difficult to
distinguish the chance variation from the true difference.
For example, the average rate of LEA is about 1.5% among
all 100,280 diabetes patients during the study period for
the entire state while for male patients aged 90 or above
from county 9, the rate is 100% since there is only one patient
in this group and he had LEA. Meanwhile, pooling of neigh-
boring units often masks important real differences.

Advances in Bayesian hierarchical modeling have made
it possible to obtain stable estimates for such small-area
problems by using information from all of the areas to ob-
tain estimates for individual areas. Rapidly developing
computational tools such as Gibbs sampling procedure by
Gelfand and Smith (1990) and other Markov chain Monte

1877-5845/$ - see front matter � 2010 Published by Elsevier Ltd.
doi:10.1016/j.sste.2010.03.008

q This research was supported in part by NSFGrant SES-0720229 and
NIH Grants R21DK067172 and R01-MH071418.

* Corresponding author. Address: Department of Statistics, University
of Missouri-Columbia, 134 Middlebush Hall, Columbia, MO, USA.

E-mail address: sund@missouri.edu (D. Sun).

Spatial and Spatio-temporal Epidemiology 1 (2010) 169–176

Contents lists available at ScienceDirect

Spatial and Spatio-temporal Epidemiology

journal homepage: www.elsevier .com/locate /sste

http://dx.doi.org/10.1016/j.sste.2010.03.008
mailto:sund@missouri.edu
http://www.sciencedirect.com/science/journal/18775845
http://www.elsevier.com/locate/sste


Carlo (MCMC) methods by Tanner (1993) have greatly pro-
moted the development of this topic. Literatures using this
technique have been growing rapidly. Applications to epi-
demiology and disease mapping can be found in Lawson
et al. (1999), Elliott et al. (2000), and Lawson and Williams
(2001).

In this paper, we propose several Bayesian hierarchical
models for LEA risk. In Section 2, a logistic linear mixed
model including fixed age effects, a fixed gender effect,
and random spatial effects is proposed as the first-stage
prior. Conditional autoregressive prior is used for the ran-
dom spatial effects. Priors for fixed effects and variance
components are also specified.

In Section 3, the computation using Gibbs sampling pro-
cedure is implemented. Numerical results for posterior
densities are given. The Bayesian estimates are shown to
be quite robust in terms of choices of hyper-parameters.
The convergence issue is also discussed. In Section 4, maps
of estimates of risk for LEA are shown, and the practical
meanings of which are discussed. Several alternative mod-
els are examined using Deviance Information Criterion
(DIC) by Spiegelhalter et al. (2002) to evaluate the signifi-
cance of parameters in the original model. Some comments
are given in Section 5.

2. Bayesian hierarchical model

2.1. Logistic linear mixed model

We first divide the patients into groups according to
their age, gender, and county of beneficiary. Let nijk repre-
sent the total number of patients from county i, age group
j, and gender k; yijk be the total number of patients who
had LEA and pijk be the probability of a patient having
LEA from such a group, where i ¼ 1;2; . . . ; I ¼ 115 are for
the 115 counties in Missouri (including St. Louis City);
j ¼ 1 when age is between 65 and 70, j ¼ 2 when age is be-
tween 70 and 80, j ¼ 3 when age is between 80 and 90, and
j ¼ 4 when age is above 90; k ¼ 1 stands for male and k ¼ 2
stands for female. We first assume that

yijk � Binomialðnijk;pijkÞ: ð1Þ

Alternatively, the model (1) can be replaced with a Pois-
son distribution with the mean nijkpijk. It turns out that the
estimates for pijk are quite robust in terms changing the
likelihood function. Following Ghosh et al. (1998) and
Sun et al. (2000). The first level of hierarchical prior is

log
pijk

1� pijk

 !
¼ aj þ bk þ Zi þ �ijk; ð2Þ

where aj stands for the effect of age group j, bk is the effect
of gender k, Zi is the spatial effect of county i, and �ijk ac-
counts for extra variation not explained by the additive
model with mean 0 and variance de. In particularly, we as-
sume that

�ijk�
iid Nð0; deÞ: ð3Þ

Notice that b1 is set to zero so that the parameters are
identifiable.

2.2. Distribution of Zi

The modified conditional autoregressive model is used
to capture the spatial correlations among Z ¼ ðZ1; . . . ; ZIÞ0,

Z � N 0; dzðD� qCÞ�1
� �

; ð4Þ

where C is the adjacency matrix defined by: Ckl ¼ 1 if coun-
ties k and l share a common boundary, including Ckk ¼ 0.
Here D ¼ diagðd1; d2; . . . ; d115Þ, and di ¼

P
k–iCik is the num-

ber of neighbors of county i. Note that q is a parameter of
correlation. If q ¼ 0, the Zi’s are independent and there is
no spatial correlation among county effects. The density
of Z exists if q is between �1 and 1. The use of this prior
can be dated to Besag (1974) and became popular since Be-
sag et al. (1991) and Cressie (1991). It was applied to mod-
el the spatial effects for lung cancer mortality in Sun et al.
(2000).

2.3. Other priors

To complete the Bayesian analysis, we need the priors
for ðaj; b2;q; de; dzÞ. We assume that

aj � Nðlj; djÞ; j ¼ 1; . . . ;4; ð5Þ
b2 � Nðl5; d5Þ; ð6Þ
q � Uniformð�1;1Þ: ð7Þ

We also assume inverse gamma priors for de and dz:

de � Inv � Gammaða1; b1Þ; ð8Þ
dz � Inv � Gammaða2; b2Þ: ð9Þ

In the computation, aj and b2 are given a flat prior,
Nð0;106Þ (with mean li ¼ 0 and variance di ¼ 106 for
i ¼ 1; . . . ;5). For de and dz, a set of hyper-parameters is used:

ða1; b1Þ ¼ ð2:90; 0:39Þ and ða2; b2Þ ¼ ð2:42;0:65Þ: ð10Þ

Here the mean and standard deviation of de are 0.20 and
0.22, and the mean and standard deviation of dz are 0.46
and 0.71. These hyper-parameters were chosen based on
the method given in Sun et al. (2000). That is, it was based
on some vague priors. The comparison of the prior and pos-
terior densities will be given in Section 3.1. We will see
that the prior variance is much bigger then the posterior
variance. We will also see the Bayesian estimators are
quite robust in terms of changing the hyper-parameters.

3. Computation via MCMC using OPENBUGS

3.1. Numerical results

OPENBUGS is used to run Gibbs sampling to calculate
the posterior summaries and densities. Three groups of ini-
tial values are used and we burn in the first 20,000 samples
so that the parameters become stationary, and we take
every 5th sample from the next 50,000 iterations, which
gives a total of 30,000 samples for every parameter.

Age effects aj: The summaries of posterior quantities of
aj are shown in Table 1, and the posterior densities of aj

are compared in Fig. 1(a). From the plot we can see that
the age effects aj are decreasing with j (age) for groups
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