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a b s t r a c t

During the last three decades, Bayesian methods have developed greatly in the field of epi-
demiology. Their main challenge focusses around computation, but the advent of Markov
Chain Monte Carlo methods (MCMC) and in particular of the WinBUGS software has opened
the doors of Bayesian modelling to the wide research community. However model com-
plexity and database dimension still remain a constraint.

Recently the use of Gaussian random fields has become increasingly popular in epidemi-
ology as very often epidemiological data are characterised by a spatial and/or temporal
structure which needs to be taken into account in the inferential process. The Integrated
Nested Laplace Approximation (INLA) approach has been developed as a computationally
efficient alternative to MCMC and the availability of an R package (R-INLA) allows
researchers to easily apply this method.

In this paper we review the INLA approach and present some applications on spatial and
spatio-temporal data.

� 2012 Elsevier Ltd. All rights reserved.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2. Spatial and spatio-temporal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3. Integrated Nested Laplace Approximation (INLA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1. The R-INLA package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2. INLA for spatial areal data: suicides in London . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3. INLA for spatio-temporal areal data: low birth weight in Georgia. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4. The stochastic partial differential equation approach for geostatistical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.1. INLA/SPDE for spatial geostatistical data: Swiss rainfall data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2. INLA/SPDE for spatio-temporal geostatistical data: PM10 air pollution in Piemonte region. . . . . . . . . . . . . . . . . . . . . . . . . 46

5. Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

1. Introduction

During the last three decades, Bayesian methods have
developed greatly and are now widely established in many
research areas, from clinical trials (Berry et al., 2011), to
health economic assessment (Baio, 2012) to the social
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sciences (Jackman, 2009), to epidemiology (Greenland,
2006).

The basic idea behind the Bayesian approach is that
effectively only one form of uncertainty exists, which is de-
scribed by suitable probability distributions. Thus, there is
no fundamental distinction between observable data or
unobservable parameters, which are also considered as
random quantities. The uncertainty about the realised va-
lue of the parameters given the current state of informa-
tion (i.e. before observing any new data) is described by
a prior distribution. The inferential process combines the
prior and the (current) data model to derive the posterior
distribution, which is typically, but not necessarily, the
objective of the inference (Bernardo and Smith, 2000; Lind-
ley, 2006).

There are several advantages to the Bayesian approach:
for instance the specification of prior distributions allows
the formal inclusion of information that can be obtained
through previous studies or from expert opinion; the (pos-
terior) probability that a parameter does/does not exceed a
certain threshold is easily obtained from the posterior dis-
tribution, providing a more intuitive and interpretable
quantity than a frequentist p-value. In addition, within
the Bayesian approach, it is easy to specify a hierarchical
structure on the data and/or parameters, which presents
the added benefit of making prediction for new
observations and missing data imputation relatively
straightforward.

Epidemiological data, e.g. in terms of an outcome and
one or more risk factors or confounders, are often
characterised by a spatial and/or temporal structure which
needs to be taken into account in the inferential process.
Under these circumstances, the Bayesian approach is gen-
erally particularly effective (Dunson, 2001) and has been
applied in several epidemiological applications, from ecol-
ogy (Clark, 2005) to environmental studies (Wikle, 2003;
Clark and Gelfand, 2006), to infectious disease (Jewell
et al., 2009). For example, if the data consist of aggregated
counts of outcomes and covariates, typically disease map-
ping and/or ecological regression can be specified (Lawson,
2009). Alternatively, if the outcome or risk factors data are
observed at point locations, then geostatistical models are
considered as suitable representations of the problem
(Diggle and Ribeiro, 2007).

Both models can be specified in a Bayesian framework
by simply extending the concept of hierarchical structure,
allowing to account for similarities based on the neigh-
bourhood or on the distance, for area-level or point-refer-
ence data, respectively. However, particularly in these
cases, the main challenge in Bayesian statistics resides in
the computational aspects. Markov Chain Monte Carlo
(MCMC) methods (Brooks et al., 2011; Robert and Casella,
2004), are normally used for Bayesian computation, argu-
ably thanks to the wide popularity of the BUGS software
(Lunn et al., 2009, 2012). While extremely flexible and able
to deal with virtually any type of data and model, in all but
trivial cases MCMC methods involve computationally- and
time-intensive simulations to obtain the posterior distri-
bution for the parameters. Consequently, the complexity
of the model and the database dimension often remain
fundamental issues.

The Integrated Nested Laplace Approximation (INLA;
Rue et al., 2009) approach has been recently developed
as a computationally efficient alternative to MCMC. INLA
is designed for latent Gaussian models, a very wide and
flexible class of models ranging from (generalized) linear
mixed to spatial and spatio-temporal models. For this rea-
son, INLA can be successfully used in a great variety of
applications (e.g. Li et al., 2012; Riebler et al., 2012;
Ruiz-Cárdenas et al., 2012; Martino et al., 2011; Roos
and Held, 2011; Schrödle and Held, 2011a,b; Schrödle
et al., 2011; Paul et al., 2010), also thanks to the availabil-
ity of an R package named R-INLA (Martino and Rue,
2010). Furthermore, INLA can be combined with the
Stochastic Partial Differential Equation (SPDE) approach
proposed by Lindgren et al. (2011) in order to implement
spatial and spatio-temporal models for point-reference
data.

The objective of this paper is to present the basic fea-
tures of the INLA approach as applied to spatial and spa-
tio-temporal data. The paper is structured as follows:
first in Section 2 we review the main characteristics of spa-
tial and spatio-temporal data defined at the point and area
level; then we provide an overview of the theory behind
INLA in Section 3 and present two practical applications
on area level data in Sections 3.2 and 3.3. After this in Sec-
tion 4 we review the SPDE approach to deal with geostatis-
tical data, and then present two practical applications on
spatial and spatio-temporal point level data (Sections 4.1
and 4.2). Finally Section 5 discusses some of the issues
and provides some conclusions.

2. Spatial and spatio-temporal data

Spatial data are defined as realisations of a stochastic
process indexed by space

YðsÞ � fyðsÞ; s 2 Dg

where D is a (fixed) subset of Rd (here we consider d ¼ 2).
The actual data can be then represented by a collection of
observations y ¼ fyðs1Þ; . . . ; yðsnÞg, where the set
ðs1; . . . ; snÞ indicates the spatial units at which the mea-
surements are taken. Depending on D being a continuous
surface or a countable collection of d-dimensional spatial
units, the problem can be specified as a spatially continu-
ous or discrete random process, respectively (Gelfand
et al., 2010).

For example, we can consider a collection of air pollu-
tant measurements obtained by monitors located in the
set ðs1; . . . ; snÞ of n points. In this case, y is a realisation of
the air pollution process that changes continuously in
space and we usually refer to it as geostatistical or point-
reference data. Alternatively, we may be interested in
studying the spatial pattern of a certain health condition
observed in a set ðs1; . . . ; snÞ of n areas (rather than points),
defined for example by census tracts or counties; in this
case, y may represent a suitable summary, e.g. the number
of cases observed in each area.

The first step in defining a spatial model within the
Bayesian framework is to identify a probability distribu-
tion for the observed data. Usually we select a distribution
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