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a b s t r a c t

Spatial data often possess multiple components, such as local clusters and global cluster-
ing, and these effects are not easy to be separated. In this study, we propose an approach
to deal with the cases where both global clustering and local clusters exist simultaneously.
The proposed method is a two-stage approach, estimating the autocorrelation by an EM
algorithm and detecting the clusters by a generalized least square method. It reduces the
influence of global dependence on detecting local clusters and has lower false alarms. Sim-
ulations and the sudden infant disease syndrome data of North Carolina are used to illus-
trate the difference between the proposed method and the spatial scan statistic.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In spatial data analysis, one of the frequently discussed
issues is the relationship between geographical locations,
that is, the identification of spatial patterns. The particular
interest is whether certain locations are significantly
different from other locations in the aspect of statistical
testings. Besag and Newell (1991) categorized such tests
into two types: general tests and focused tests. For the gen-
eral tests, it can be further categorized as global clustering
and cluster detection tests. Kulldorff et al. (2006) gave a
great amount of references of these tests.

Global clustering tests, such as Moran’s I statistic and
Geary’s C statistic, are concerned with global clustering
patterns. Global clustering patterns can be modeled by
using spatial autoregressive models or conditional autore-
gressive models (Besag, 1974; Cressie, 1993). On the other
hand, cluster detection tests are used to determine if some
attributes of one or more subregions, such as incidence
rates of disease, are unusually large, that is, to identify

hot spots. Getis and Ord (1992) and Anselin (1995) dis-
cussed several statistics to test local dependence. In recent
years, spatial cluster detection methods have been widely
applied to many different fields.

However, the efficiency of cluster detection methods is
often data-dependent. Among these methods, the spatial
scan statistic (SaTScan) (Kulldorff and Nagarwalla, 1995)
is perhaps the most popular and is considered to be quite
effective in many instances. For example, Huang et al.
(2008) had compared several cluster detection methods,
such as circular and elliptic spatial scan statistics (SaT-
Scan), flexibly shaped spatial scan statistics, Turnbull’s
cluster evaluation permutation procedure, local indicators
of spatial association, and upper-level set scan statistics.
They found that the SaTScan had the best performance in
several synthetic cluster patterns. Although the past stud-
ies have shown that the SaTScan is quite effective in
detecting spatial clusters (Kulldorff et al., 2003; Takahashi
and Tango, 2006; Huang et al., 2008), few of these studies
(and other cluster detection methods) discuss the perfor-
mance of cluster detection in case of global spatial autocor-
relation. Besides, it should be noted that the SaTScan relies
on the Monte Carlo method to decide the significance of
clusters, and the global spatial autocorrelation can distort
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the Monte Carlo results. Intuitively, cluster detection can
be expected to be more accurate when considering the glo-
bal dependence.

It should be noted that using different cluster analysis
methods, such as globally autoregressive models and clus-
ter detection methods, can also produce different interpre-
tations. For example, Cressie and Read (1989) discussed
spatial autoregressive models on the sudden infant death
syndrome (SIDS) data from 1974 to 1984 for the counties
of North Carolina and concluded that the errors show some
(nonsignificant) spatial dependent structure. On the other
hand, Kulldorff (1997) identified several local clusters
using the SaTScan for the same data but with different
combinations of all years. In other words, a pattern of
one geographical scale can be identified as another spatial
pattern.

In identifying spatial cluster patterns, almost all cluster
detection methods assume that the data are independent
rather than dependent. However, the result of cluster
detection may probably be affected by the local effects,
as well as global dependence. Ord and Getis (1995) showed
that ‘‘when global autocorrelation exists, local pockets are
harder to detect.’’ Ord and Getis (2001) said, ‘‘If existing
tests are applied without regard to global autocorrelation
structure, type I errors may abound.’’ They provided the lo-
cal O statistic, which can accommodate spatial parameters
identified from variograms and correlograms, to detect lo-
cal clusters. However, their method did not consider that
local clusters also affect the estimate of autocorrelation.
Kulldorff (2006) depicted the difficulties of identifying
these two patterns and gave a general framework for test-
ing the spatial randomness. Lawson (2006) differentiated
these two effects and gave more specific definitions of
them. Although there are many articles describing the pos-
sibility of existing multiple patterns in spatial data, the
solution to the model involved local clusters and global
dependence is rarely mentioned. In this study, in addition
to showing the difficulty of disentangling these two effects,
we propose a method including both local clusters and glo-
bal clustering.

In this paper, we propose a cluster detection approach
that deals with global spatial dependence. Before introduc-
ing the proposed method, we will first review the condi-
tional autoregressive spatial model (or the conditionally
specified spatial Gaussian model) and the SaTScan in Sec-
tion 2. In addition, we will evaluate the performance of
the SaTScan in case of spatial autocorrelation. Then, the
proposed approach is introduced, together with the EM
estimates, the scanning procedure, and the Monte Carlo
testing for handling both global dependence and clusters
in Section 3. Simulations and an empirical study (the SIDS
data of North Carolina) are used to evaluate the proposed
methods in Sections 4 and 5. We will present comments
and discussions on the proposed approach in the final
section.

2. Spatial models and the SaTScan

We first introduce the concepts of global dependence
and cluster detection. Regarding to global dependence,

we will provide a brief introduction of spatial models. For
a complete introduction to spatial autoregressive models,
please refer to Chapter 6 of Cressie (1993). To identify spa-
tial clusters, the concept of the SaTScan is briefly intro-
duced, and a detailed discussion of which can be found
in Kulldorff’s work (Kulldorff, 1997). Furthermore, we will
demonstrate that the performance of the SaTScan can be
influenced by global dependence.

2.1. Conditional autocorrelated regressive model with
Gaussian distribution

For the global dependence model, we will only use the
conditional autocorrelated regressive (CAR) model in this
study. The CAR model is considered on the basis of its pop-
ularity and can be used in spatial regression models. For a
CAR model, fZðsiÞ : si 2 D; 8i 2 f1;2; . . . ; ngg is defined as a
spatial process, or a random process in the spatial domain
in lattice D, and si ¼ ðui;v iÞ is the location of cell i, where
ðui;v iÞ are the coordinates. In practice, si is often defined
as the geographic center of cell i. Suppose the full condi-
tional distribution of ZðsiÞ which follows a Gaussian distri-
bution can be expressed as

f ðzðsiÞjfzðsjÞ : j–igÞ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
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where f denotes the conditional density function of zðsiÞ,
and hi and r2

i are the conditional mean and variance
respectively. The term ‘‘pairwise-only dependence’’ is de-
fined as the condition of hi satisfying

hiðfzðsjÞ : j–igÞ ¼ li þ
X
j–i

cijðzðsjÞ � ljÞ: ð2Þ

Let us assume that the weight of neighborhood informa-
tion, cij, is equal to q�wij, where wij is a known weight
and q is an unknown spatial dependent parameter. Along
with the Hammersley–Clifford theorem, the joint
distribution of Z � ðZðs1Þ; . . . ; ZðsnÞÞT , the CAR model, can
be established as Z � Gauðl; ðI � q�WÞ�1MÞ, where
l ¼ ðl1; . . . ;lnÞ

T is the mean vector, W is an n� n matrix
whose ði; jÞ element is wij, M � diagðr2

1; . . . ;r2
nÞ is an n� n

diagonal matrix, and ðI � q�WÞ is necessarily symmetric
and invertible (Besag, 1974; Cressie, 1993).

To estimate the unknown parameters in the CAR model,
the maximum likelihood estimates (MLEs) are the most
popular method. However, the MLEs do not have the
closed forms and this reason could be an intractable prob-
lem when we need to do some further computations. Besag
(1974) introduced the pseudo-likelihood to solve it and has
been proved that the estimates are consistent. We will ap-
ply the pseudo-likelihood to obtain the EM estimates in
case of clusters which will be discussed in Section 3.

Besides, the selection of a suitable weight function is a
difficult problem. In this paper, we will use the ‘‘C’’ type
weight function, which is a globally standardized function
(the number of cells divided by sums over all number of
neighbors in the study region), because it can maintain a
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