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a b s t r a c t

Sparse count data violate assumptions of traditional Poisson models due to the excessive
amount of zeros, and modeling sparse data becomes challenging. However, since aggrega-
tion to reduce sparseness may result in biased estimates of risk, solutions need to be found
at the level of disaggregated data. We investigated different statistical approaches within a
Bayesian hierarchical framework for modeling sparse data without aggregation of data. We
compared our proposed models with the traditional Poisson model and the zero-inflated
model based on simulated data. We applied statistical models to type 1 and type 2 diabetes
in youth 10–19 years known as rare diseases, and compared models using the inference
results and various model diagnostic tools. We showed that one of the models we pro-
posed, a sparse Poisson convolution model, performed better than other models in the sim-
ulation and application based on the deviance information criterion (DIC) and the mean
squared prediction error.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Sparse data is often encountered in epidemiologic stud-
ies. For instance, even though diabetes mellitus ranks as
the third most common chronic disease among youths, it
is still a very rare disease with an estimated incidence of
24.3 per 100,000 person-years at risk (Dabelea et al.,
2007). One common solution for modeling sparse data is

to aggregate data to a larger spatial or temporal unit, and
then model the aggregated data. Previous studies of diabe-
tes mellitus in youth have frequently employed temporal
aggregation, basing spatial analyses on 10 or more years
of incidence data (Patterson and Waugh, 1992; Samuelsson
et al., 2004; Feltbower et al., 2003; Staines et al., 1997;
Schober et al., 2003; Waldhor et al., 2003; Rytkonen
et al., 2003). While in the past most spatial analyses of dia-
betes incidence relied on describing incidence rates by re-
gion (Patterson and Waugh, 1992; Samuelsson et al., 2004;
Feltbower et al., 2003), more recently standard Poisson
convolution models have been applied in a Bayesian
framework (Schober et al., 2003; Waldhor et al., 2003;
Cardwell et al., 2006). However, it is well known that spa-
tial or temporal aggregation of data often causes ecological
bias (Piantadosi et al., 1988; Greenland and Robins, 1994;
Wakefield, 2004; Lawson, 2006). The ecological fallacy
(Firebaugh, 2001; Freedman, 2001) occurs when inferences
are made about individual level associations based on
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aggregate data. Another effect is that aggregation increases
the spatial correlation between observation units. Thus,
there is a need to identify methods suitable for dealing
with sparse data at lower levels of aggregation.

The log linear Poisson model which is typically applied
to aggregated count data (Lawson, 2006; Besag and
Kooperberg, 1995) cannot, however, be applied success-
fully to sparse or disaggregated data. In sparse data,
overdispersion is common when the variance is larger than
the mean due to the excess amount of zeros.

In the widely used zero-inflated Poisson (ZIP) model
(Cheung, 2002; Martin et al., 2005; Lawson, 2008), zero ob-
served counts are divided into excess zero counts and non-
excess zero counts. Excess zero counts are regarded as zero
counts which are observed in the process excessively and
cannot be modeled by the Poisson distribution; while non-
excess zero counts are zero counts which are derived from
a Poisson distribution. While the traditional ZIP models do
not model the excess zero counts based on the Poisson
model, we may suggest a more sophisticated approach
which models the excess zero counts as well as nonexcess
zero counts using a special form of the Poisson model for
better inference.

We investigate different statistical approaches within a
Bayesian hierarchical framework for modeling sparse data
without aggregation of data. We modify the ZIP model, and
suggest several new statistical models. The Bayesian ap-
proach is regarded as a flexible modeling approach com-
pared to the frequentist approach in that it combines
both data information and prior information in inference
through prior distributions of each parameter, and it en-
ables the building of a complex model by using a hierarchi-
cal structure. We compare our proposed models with the
traditional Poisson convolution model and the ZIP model
through simulation studies, and apply our statistical mod-
els to data on the incidence of type 1 and type 2 diabetes
mellitus in youth aged 10–19 years in South Carolina (SC)
as part of a project on the spatial epidemiology of diabetes
in youth (Liese et al., 2010). Model evaluation is conducted
based on model diagnostic tools such as the deviance infor-
mation criterion (DIC) and the mean squared prediction
error (MSPE) (Lawson, 2008; Banerjee et al., 2006).

2. Statistical models

Observed counts are typically fitted by the Poisson
model with a log link which establishes a log linear rela-
tionship between the mean of the Poisson model and
covariates.

In the log linear Poisson model, we include log expected
counts as an offset to model the relative risk of disease, and
also add other covariates to capture confounding effects
and random effects to explain the additional variation that
cannot be captured by covariates. Let yi = 1, . . . ,n be the ob-
served count of the ith region. The standard Poisson regres-
sion model for modeling count data is defined as:

yi � PoisðkiÞ ¼
expð�kiÞkyi

i

Y i!

logðkiÞ ¼ logðEiÞ þ aþ Xibþ ui þ v i

where Ei is an expected count, a is an intercept, Xi is a ma-
trix of covariates, b is a vector of parameters associated
with individual covariates, and ui and vi are spatially corre-
lated and uncorrelated random effects, respectively. This is
the classic convolution model with covariates first pro-
posed by Besag et al. (1991).

In the presence of an excess amount of zeros in data, the
Poisson model is not a suitable model to apply to data be-
cause the key model assumption of the equality of the
mean and the variance of the Poisson model is not met.
The ZIP model is a frequently suggested model, where a
mixture model of a proportion 1 � p of excess zeros, and
a proportion p of nonexcess zero and nonzero counts is as-
sumed. Excess zero counts are zero counts that are not de-
rived from a Poisson distribution, and nonexcess zero
counts are natural zero counts which are derived from a
Poisson distribution. In the ZIP model, the Poisson model
is fitted by utilizing only a proportion of nonexcess zeros
and total nonzero counts. The ZIP model is defined as:

yi � PoisðkiÞ
ki ¼ Ii � li

logðliÞ ¼ logðEiÞ þ aþ Xibþ ui þ v i

Ii � BernoulliðpÞ
P � betað1;1Þ

where I is the indicator to distinguish excess zero counts
and nonexcess zero or nonzero counts (I = 0 for excess zero
counts, and I = 1 for nonexcess zero or nonzero counts) and
p is the probability of nonexcess zero counts. A review of
zip models can be found in Ghosh et al. (2006).

2.1. Novel models

Here, we propose several models which use the infor-
mation from expected counts in modeling the proportion
of excess zeros, and refer to them as extended ZIP (EZIP)
models. In EZIP1, we model the probability of excess zero
counts 1 � pi as a function of expected counts Ei: pi = Ei/
(d + Ei), where d is a threshold to distinguish excess zeros
due to the low values of expected counts from nonexcess
zero counts. If we observe an expected count in a region
which is larger than d, pi becomes close to 1 which indi-
cates that the probability of observing an excess zero count
in a region becomes small. On the other hand, for an ex-
pected count smaller than d, we have more probability of
observing excess zero counts. The threshold can be chosen
to a fixed particular value or it can be estimated within the
model. The EZIP1 is defined as:

yi � PoisðkiÞ
ki ¼ Ii � li

logðliÞ ¼ logðEiÞ þ aþ Xibþ ui þ v i

Ii � BernoulliðpÞ
P � Ei=ðdþ EiÞ

In addition to the EZIP1 model we also examined two
other models that are variants of this model: EZIP2 and
EZIP3. The EZIP2 model adopts the information on ex-
pected counts directly in modeling the Poisson distribution
as well as the proportion of excess zero counts. While the
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