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a b s t r a c t

A method based on the kinetics of crystal growth has been developed and applied to the computation of
three-dimensional microstructure in austenite–martensite steels. The detailed crystallography of the
transformation is used to model a realistic martensitic microstructure during the transformation without
an external system of stresses. The interaction energy based on the plastic work model is taken into
account to compute the variant selection in an austenitic stainless steel and formation of martensite
under externally applied stress.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Martensitic transformation in steels normally occurs in an
athermal manner, during cooling in a temperature range that can
be accurately determined for different steels. When the martensitic
transformation occurs, the austenite transforms to martensite
through a shape change which is an invariant plane-strain (IPS)
[1]. The rate of transformation can reach the speed of sound in
metals. Martensite forms in 24 crystallographic variants in each
austenite grain. The chemical driving force DG which depends on
the composition and transformation temperature applies to all
the variants equally. Generally, each variant has an equal chance
of existence. However, since martensitic transformation is a defor-
mation, an externally applied stress will favour those variants that
comply with the stress and as a result variant selection occurs [2].

Consider an austenite grain with sample axes which are defined
by an orthonormal set of basis vectors ½c; a1�; ½c; a2�, and ½c; a3�. The
matrix notation used here is due to Bowles and MacKenzie [27].
The real basis is referred to as ‘c’ and its corresponding reciprocal
basis is defined using the basis symbol ‘c�’. The IPS can be repre-
sented by a 3� 3 matrix ðc P c) such that [1,3,4]:

ðc P cÞ ¼
1þmd1p1 md1p2 md1p3

md2p1 1þmd2p2 md2p3

md3p1 md3p2 1þmd3p3

0
B@

1
CA ð1Þ

where ½c; d� ¼ ½d1;d2;d3� are the components of d in the c basis, a
unit vector which points toward the direction of the displacement.
½p; c�� are the component of the unit invariant-plane normal in the
c� basis (normal to the habit plane). m is the magnitude of the shape
deformation.

The variant selection occurs if the transformation develops
under the externally applied system of stresses. The interactions
between martensite and these stresses affects the mechanical free
energy of the individual variants depending on their crystallo-
graphic orientation and will produce an energy which adds to
the chemical driving force. Variant selection occurs when the inter-
action energy is large enough compared to the chemical free
energy DG [5,6].

Different approaches have been used to calculate the interac-
tion energy U between applied stress and the transformation
strain. Humbert et al. [6] used a method based on the elasticity
theory rather than the plastic model of Patel and Cohen [2]. How-
ever, since the transformation strain is plastic, the plastic work
explained in Ref. [2] gives the correct value of interaction energy
[5]. According to Patel and Cohen, the interaction energy between
the applied stress and martensitic transformation can be simply
described as

U ¼ rN � dþ s� s ð2Þ

where rN and s are the normal component of stress and corre-
sponding resolved shear stress on the habit plane in the shear direc-
tion, d and s are the dilatational and shear strains due to martensitic
transformation, respectively. When the normal stress is tensile, r is
positive, while the compressive stress makes its numerical value
negative. The shear component of the stress is always positive dur-
ing uniaxial loading [2]. This implies that shear stresses will always

http://dx.doi.org/10.1016/j.commatsci.2014.08.047
0927-0256/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail addresses: a.rahnama10@imperial.ac.uk (A. Rahnama), r.qin@imperial.ac.

uk (R.S. Qin).

Computational Materials Science 96 (2015) 102–107

Contents lists available at ScienceDirect

Computational Materials Science

journal homepage: www.elsevier .com/locate /commatsci

http://crossmark.crossref.org/dialog/?doi=10.1016/j.commatsci.2014.08.047&domain=pdf
http://dx.doi.org/10.1016/j.commatsci.2014.08.047
mailto:a.rahnama10@imperial.ac.uk
mailto:r.qin@imperial.ac.uk
mailto:r.qin@imperial.ac.uk
http://dx.doi.org/10.1016/j.commatsci.2014.08.047
http://www.sciencedirect.com/science/journal/09270256
http://www.elsevier.com/locate/commatsci


aid the transformation while the normal stress may stimulate the
martensitic transformation if it is tensile, or oppose it in the case
that this component of stress is compressive. Kundu et al. [5,7,8]
used the combination of crystallographic theory and interaction
energy in their calculation and reliably predicted the overall texture
due to martensitic transformation.

In the last few decades, the phase field modelling has been used
as a powerful computational method for predicting morphological
and microstructural evolution in martensitic phase transformation.
Different models have been put forward by various groups of sci-
entists, for instance, Falk [9] proposed a one dimensional model
for martensitic phase transformation and exploited the shear strain
as the order parameter, Barsch and Krumhansl [10,11] derived gov-
erning equation for proper martensitic phase transformation
through Ginzburg–Landau theory, Saxena et al. [12] and Rasmus-
sen et al. [13] worked with dimensionless and scaled local devia-
toric strains as order parameter, Ahluwalia et al. [14,15]
introduced a polycrystal model based on the continuum elasticity,
Cui et al. [16] proposed a two dimensional model for generic hex-
agonal to orthorhombic phase transformation, Shchyglo et al. [17]
suggested a systematic way to construct the Landau free energy
function in NiTi and NiTiCu shape memory alloys, Wang and Kha-
chaturyan [18] proposed a realistic three-dimensional phase field
simulation for the generic improper cubic to tetragonal transfor-
mation in a single constrained crystal, Li and Chen [19] presented
a model to predict the precipitation of rhombohedral in a cubic
matrix in Ti11Ni14, Artemev et al. [21] studied the effect of external
stress on martensitic phase transformation and shown that exter-
nal stresses increase the production of those variants which are
favoured by applied stresses, Artemev et al. [20] also suggested a
model for proper martensitic transformation and simulated two
different types of cubic to tetragonal transformation, Jin et al.
[22] presented a phase field model for the cubic to trigonal trans-
formation in AuCd alloy, Yamanaka et al. [23] suggested an elasto-
plastic model to simulate cubic to tetragonal transformation for an
elastic perfectly plastic material. In the last years, Levitas and Pres-
ton developed the Ginzburg–Landau theory for proper martensitic
phase transformation in various aspects. They proposed their
model in three papers: in the first paper [24], 2–3–4 polynomial
for thermal part of Gibbs energy was used and the transformation
strain was coupled with the order parameter through 2–3–4 poly-
nomial or quadratic; in the second paper [25], the austenite–mar-
tensite Landau model was developed to cover martensite–
martensite transformation; and in the third paper [26], it is shown
that the 2–3–4–5 polynomial is not the only Landau potential that
could be used and alternative Landau potentials were introduced,
2–4–6 polynomial in the Cartesian coordinate system, and two
potentials in the hyperspherical coordinate system. All these
researches among others have revealed the huge capabilities of
phase field modelling in predicting the microstructure evolutions
at mesoscale. However, this method could be sometimes mathe-
matically cumbersome. Therefore, the need for fast computational
methods for the simulation of the microstructure evolution is
becoming important.

In the present work, mathematical models have been pro-
grammed to simulate the martensitic transformation. The micro-
structure of martensite is, firstly, computed when no external
stress is applied. For this, a set of crystallography data is deduced
using the theory of martensite and employed in calculations. Sec-
ondly, during the transformation under an external system of
stresses, the same method as used in Ref. [5] is employed. A set
of crystallographic data for an austenitic stainless steel is used to
programme the growth of martensitic variants in an individual
austenite grain. This theory is consistent with all the experimen-
tally observed features of the martensitic transformation
[1,3,27,28]. Through the present work, it is assumed that the mate-

rials is free from defects. However, the real materials always have
defects which play a significant role in the evolution of martensitic
microstructure. Also in the present computation, the stress or
strain interactions between plates are not accounted for. The pre-
sented model can be used for modelling the martensitic transfor-
mation in steels as an alternative method for phase filed method.
This model is mathematically simpler and is able to compute the
microstructure much faster than phase field method. The proposed
model benefits from using the phenomenological theory of mar-
tensite crystallography which describes the crystallography and
shape of martensite plates correctly.

2. Crystallography

Eq. (1) can be simplified as:

ðc P cÞ ¼ I þm½c; d�ðp; c�Þ ð3Þ

where I is the identity matrix. There exist 24 different martensite
variants in any austenite grain, and hence resulting in 24 different
IPSs. Fig. 1a shows an arbitrary vector u traversing an austenite
grain before transformation. Du indicates its intercept with the aus-
tenite grain which will transform to martensite. Because of the
transformation, the vector u becomes a new vector v as illustrated
in Fig. 1b. The components of this new vector can be determined
as follows [5]:

v ¼ PDuþ ðu� DuÞ ð4Þ

The change in shape caused by the formation of a particular
martensite plate i in an austenite grain, ðc Pi cÞ � Pi is known from
the crystallographic theory developed for martensite [3,28]. Know-
ing this deformation, it is possible to deduce the remaining 23
matrices for a grain of austenite in the sample frame of reference
using symmetry operations. Each can be formulated using a simi-
larity transformation as follows:

ðS Pi SÞ ¼ ðS J cÞðc Pi cÞðc J SÞ ð5Þ

where the matrix ðS J cÞ refer to rotation relating the grain of aus-
tenite to the sample axes, and ðc J SÞ indicates the inverse of this
rotation matrix. In such a way, one is able to calculate the compo-
nents of vector v in the reference frame of the sample.

Fig. 1. The formation of an initial vector u due to the formation of martensite. (a) An
austenite grain prior to transformation, with the ultimate location of a plate of
martensite marked. (b) The following martensite transformation.
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