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a b s t r a c t

In the extraction of elastic constants of cubic crystals from first-principles calculations of energy or stress,
the relative deviation of the adopted lattice-constants from true values ðDa=a0Þ is inevitably added to the
diagonal components of the applied elastic strains, which might lead to sizeable inaccuracy of bulk mod-
ulus B and tetragonal shear modulus C0. This paper suggests an arithmetic scheme that dramatically
decrease the error transfer from Da=a0 in the extraction of B and C0 from first-principles calculations of
stress. By using this scheme, we compute the elastic constants of a-Fe, which are all in good agreement
with those extracted by least-squares scheme from the same level first-principles calculations of energy
and stress. The computed Young’s modulus E and polycrystalline shear modulus G of Fe-base binary
alloys at alloy concentration of 0.78 at.% are both satisfactorily consistent with the data at 0 K deduced
from the available experimental measurements. Theoretical basis and tests both indicate that the sug-
gested scheme is accurate and efficient in extracting elastic constants of cubic crystals at equilibrium.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

To date, first-principles quantum mechanical calculations have
well developed to such an extent that quantitatively accurate pre-
dictions of the physical and chemical properties of materials are
possible. Particularly, the calculation of elastic constants, which
requires high numerical and methodological precision, can be per-
formed by first-principles [1]. For a newly developed first-princi-
ples method, the comparisons of the calculated elastic constants
with experimental measurements, or with other results of more
precise, well-established first-principles methods often provide a
critical feasibility test [2,3]. Due to continued developments,
first-principles technique is able to explore the effects of tempera-
ture, pressure, and additives as well as impurities on elastic prop-
erties of materials, and such applications have appeared in a
comprehensive range of physics, materials, geophysics, and miner-
alogy journals [4–12]. The standard method to compute elastic
constants (either at equilibrium or under pressure) through first-
principles modeling is to calculate second derivatives of the total
energy EðeÞ per volume as a function of properly chosen strain e

[1,3,11]. The procedure is usually as follows (see also Ref. [13]).
The modeling system is first fully relaxed so that minimum-energy
cell data are derived. Then ionic relaxation is performed on the
strained system with fixed volume and shape. Several elastic
strains with different distortions d are applied for each strain type,
giving an energy parabola as a quadratic function of d. The coeffi-
cients of d in each quadratic function are then derived, and conse-
quently, elastic constants are obtained since they are linear
combinations of these coefficients. In practice, strains are often
specially chosen so that the elastic constants directly act as the
coefficients of d [3,9,11,14]. As regards this procedure, one under-
lying problem is that small deviation of the minimum-energy cell
data from the true ones leads to the inaccuracy of strain values
for calculating elastic constants. Le Page and Saxe recognized the
importance of this problem and put forward a symmetry-general
least-squares solution [13]. In their paper, a small unknown initial
strain is introduced by S ¼ e� e, where e is the true strain and e is
the nominal strain applied on the modeling system with mini-
mum-energy. Adequate first-principles simulations are performed
on the modeling system applied with different nominal strains and
then a set of redundant quasilinear equations is constructed. Fairly
accurate values of S components and single-crystal elastic con-
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stants Cij can be obtained by least-squares solution for this set of
equations by iterative procedure.

Besides the abovementioned ‘‘energy-strain’’ method, the elas-
tic constants of materials can be extracted from first-principles cal-
culations of stress according to the generalized Hooke’s law [15]. In
the elastic deformation regime, stress is in linear response to the
applied strain while the total energy is a quadratic function of
the strain. Therefore, from the viewpoint of first-principles calcula-
tion, the resulted stress is more sensitive to elastic strain, com-
pared with the resulted total energy, which offers big advantage
for the stress–strain method in computing elastic constants [15].
This ‘‘stress–strain’’ method originates from Nielsen and Martin’s
work of an explicit, practical expression for the stress tensor of
an arbitrary periodic solid within the local-density-functional
and its application to calculations of second-, third-, and fourth-
order elastic constants of silicon [16]. This method is also com-
monly used for computing elastic constants either at equilibrium
or under pressure [3,5,7,8,10,12]. Kiefer et al. calculated the three
elastic constants C11;C12 and C44 of cubic Mg2SiO4 spinel under dif-
ferent pressures by an arithmetic scheme with a single monoclinic
strain tensor [5]. By using the concepts and methods for extracting
elastic data and initial strain from total energy calculations [13], Le
Page and Saxe developed a symmetry-general least-squares
scheme for extracting elastic data and initial stress from first-prin-
ciples calculations of stress [15].

In recent years, some new methods for extracting elastic con-
stants from first-principles calculations of stress or energy have
been developed [17–19]. Among the algorithms for improving
the accuracy of the calculated elastic constants, one crucial is that
very precise structure optimizations be performed to obtain the
‘‘equilibrium’’ lattice parameters in both energy-strain and
stress–strain methods [7,18]. However, there has been no detailed
discussion about the effects of the imprecision of adopted lattice
parameters in extracting elastic constants from first-principles cal-
culations of energy or stress. Noticeably, as regards the mathemat-
ical technique for extracting elastic constants, the least-squares
fitting is very popular while the straight arithmetic scheme is spar-
sely used. The reason is that the least-squares scheme usually pro-
vides valuable improvement in the precision of the extracted
elastic constants over the straight arithmetic scheme. Nonetheless,
since arithmetic scheme is obviously more cost-saving than least-
squares scheme, it is attractive once the same accuracy as least-
squares scheme is realized in computing elastic constants. In this
paper, we make a detailed analysis on the error transfer from the
relative deviation of the adopted lattice-constants from true values
ðDa=a0Þ in extracting the elastic constants of cubic crystals from
first-principles calculations of energy and stress. We suggest a
new arithmetic scheme that can dramatically decrease the error
transfer in computing bulk modulus B and tetragonal shear modu-
lus C0 by using two special equations and three simple strain ten-
sors. By using this scheme, we compute the elastic constants of
a-Fe, and compare with other theoretical results extracted from
the same-level first-principles calculations of stress and energy
by least-squares fitting. In addition, we compute the Young’s mod-
ulus E and polycrystalline shear modulus G of a series of dilute Fe-
base binary alloys, and compare with the extrapolated values at 0 K
based on experimental measurements. There is satisfactory coinci-
dence in either of the above two comparisons. The later parts of
this paper are organized as follows. Section 2 describes computa-
tional methods, including the first-principles settings and this
arithmetic scheme. In Section 3, we first present explanations on
the strain magnitudes and k-point mesh settings. Then we make
a detailed analysis on the error transfer from Da=a0 in computing
elastic constants of cubic crystals. Herein, we show clearly that
there is very small error transfer from Da=a0 in computing elastic
constants by this scheme. Finally the elastic constants of a-Fe

and Fe-base binary alloys are computed and compared with other
theoretic results as well as experimental measurements in this sec-
tion. A short summary is given in Section 4.

2. Methodology

In this paper the structure optimizations of all systems, i.e., a-
Fe and Fe-base binary alloys, are performed within spin-polar-
ized density functional theory as implemented in Vienna ab initio
simulation package (VASP) [20]. The interaction between ions
and electrons is described by projector augmented wave (PAW)
method [21]. Exchange and correlation functions are taken in a
form proposed by Perdew and Wang (PW91) within generalized
gradient approximation (GGA) [22], while the correlation energy
interpolation is done by Vosko–Wilk–Nusair method [23]. The
pseudopotential with suffix ‘‘pv’’ that treat outmost p electrons
as valence is used for Mo, Mn, Nb, Pd, Rh and Ru, while the stan-
dard is used for all other elements. The energy cutoff for plane-
wave expansion of wave functions is 350 eV. The minimum-
energy lattice constants of all systems are firstly optimized by
using conjugate gradient algorithm with changing volume and
shape. In structure optimizations of the strained models, the
conjugate gradient algorithm is used with constant volume and
shape. The first order Methfessel–Paxton broadening scheme is
selected for Brillouin-zone integration, and force convergence
criterion is less than 0.002 eV/Å in all structure optimizations.
This force convergence criterion is necessary for obtaining reli-
able elastic constants since the internal ions should be fully
relaxed. For all Fe-base binary alloy systems, the 4� 4� 4 bcc
(body-centered cubic) supercell with periodic boundary condi-
tions is used, along with the C-centered 5 ⁄ 5 ⁄ 5 k-point mesh
adopted for Brillouin zone sampling according to Monkhorst–
Pack scheme. In each of the 4� 4� 4 bcc supercells there are
127 Fe atoms and one alloying atom. In k-point mesh conver-
gence testing, the two-atom (1� 1� 1) bcc supercell of pure
a-Fe is used, with which all k-point meshes are C-centered
and generated by Monkhorst–Pack scheme. The projection oper-
ator integration for the non-local part of pseudopotential is done
in reciprocal space for the 1� 1� 1 bcc supercell, but in real
space for the 4� 4� 4 bcc supercell.

In this paper, the model system is described in Cartesian frame
with coordinate axis 1, 2 and 3 being chosen along [100], [010]
and [001] directions of a perfect cubic crystal, respectively. The
cubic model with minimum energy is specified by three lattice vec-
tors along the three orthogonal coordinate axes, i.e.,
R1 ¼ ðr;0; 0Þ;R2 ¼ ð0; r; 0Þ and R3 ¼ ð0;0; rÞ, where r is the length.
For convenience, the three lattice vectors can be arranged in a
matrix form, denoted by R,

R ¼
R1

R2

R3

0
B@

1
CA: ð1Þ

Strain tensor is also described in this Cartesian frame, denoted by e,

e ¼
e11 e12 e13

e21 e22 e23

e31 e32 e33

0
B@

1
CA; ð2Þ

where e21 ¼ e12; e31 ¼ e13 and e32 ¼ e23. We define R ¼ Rðeþ IÞ,
where I is unit matrix. The three elements in each row of Matrix
R composes a lattice vector, so that R can be expressed by

R ¼
R1

R2

R3

0
B@

1
CA: ð3Þ
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