FISEVIER

Contents lists available at ScienceDirect

Computational Materials Science

journal homepage: www.elsevier.com/locate/commatsci

Stability of binary and ternary M₂₃C₆ carbides from first principles

N.I. Medvedeva ^{a,*}, D.C. Van Aken ^b, J.E. Medvedeva ^c

- ^a Institute of Solid State Chemistry, Russian Academy of Sciences, Yekaterinburg, Russia
- ^b Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409, USA
- ^c Department of Physics, Missouri University of Science and Technology, Rolla, MO 65409, USA

ARTICLE INFO

Article history: Received 5 June 2014 Received in revised form 9 September 2014 Accepted 12 September 2014

Keywords: Transition metal carbides M₂₃C₆ Stability Electronic and magnetic properties Ab initio calculations

ABSTRACT

First-principles calculations were performed to study the phase stability of $M_{23}C_6$, (M = V, Cr, Mn, Fe, Co, Ni) and the solubility of d-impurities (Fe, Co, Ni, W) in $Cr_{23}C_6$, which is the most prevalent carbide in chromium steels. Our results correctly predict the relative stability of binary carbides, among which the most stable compounds are $V_{23}C_6$, $Cr_{23}C_6$ and $Mn_{23}C_6$. Stability of the $M_{23}C_6$ and MC carbides was related to the Md-filling, where the M-M and M-C bonds provide the cohesive properties, respectively. We demonstrated that iron and nickel should always be present in $Cr_{23}C_6$, where their concentrations may reach 50 at.% and 30 at.%, respectively. To predict the ways to control the carbide stabilization and distribution in iron matrix, both of which govern the microstructure and mechanical properties of high-alloy steels, we also investigated the effect of tungsten addition on the stability of quaternary carbides, namely (Cr, W, M)₂₃C₆ (M = Fe, Co, Ni). We found that tungsten strongly enhances the solubility of iron and nickel in chromium carbide, but it does not affect the cobalt solubility. A similar stabilizing effect was predicted for molybdenum, and it can be suggested that both tungsten and molybdenum should accelerate the formation of $M_{23}C_6$ and influence the kinetics of carbide precipitation.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Transition metal carbides with different M/C ratio, such as MC, M_3C , M_3C_2 , M_5C_2 , M_6C , M_7C_3 and $M_{23}C_6$ can be present in steels affecting appreciably their microstructure and mechanical properties. The strengthening effect arises due to homogenous carbide distribution in the matrix and at the grain boundaries, which enhances both dislocation hardening and sub-boundary hardening that improves creep resistance. A competition between the M_xC_v carbides with different M/C ratio and the resulting phase transformations occurs with variation in temperature and/or impurity concentration. The M₂₃C₆ carbides with the highest M/C ratio are formed during heat treatment by transformation of carbides with a lower M/C ratio (M₃C \rightarrow M₂C \rightarrow M₂C₆, M₃C \rightarrow M₇C₃ \rightarrow M₂₃C₆ or $M_3C \rightarrow M_6C$, $M_{23}C_6$) or from a solid solution [1–5]. The transition from M₃C to M₂₃C₆ leads to additional enhancement of wear resistance due to an increase in the carbide microhardness from 8-9 GPa to 16–18 GPa [1]. The M₂₃C₆ carbides were observed in carbon steels with Cr, Mn, W, Mo and V additions. In chromium steels, the main element in M₂₃C₆ is chromium, but other d-additions can substitute into the metal sublattice forming the multicomponent $(M, M')_{23}C_6$ carbides.

The M₂₃C₆ carbides strongly affect the stabilization of martensite substructure and, being distributed at grain boundaries, they prevent the boundary movement [6-8]. The creep resistance of steel strongly depends on the carbide composition, stability and distribution. Non-homogenous M₂₃C₆ precipitation has a negative effect on the creep properties and therefore it is important to prevent the coarsening of M23C6 precipitates for improving creep strength. The addition of tungsten slows the coarsening rate and enhances the precipitation hardening due to the presence of $M_{23}C_6$ carbides [9–14]. The solubility of iron in $Cr_{23}C_6$ sharply increases with tungsten addition, and the ternary carbide (Fe, W)₂₃C₆ was found in steels as concurrent with Fe₃W₃C. The Cr-Fe-W-C diagram by Goldschmidt [15] includes the Fe₂₁W₂C₆ phase, which corresponds to the M23C6 structure, where all Cr atoms are replaced by Fe and W. The formation of ternary Fe₂₁W₂C₆, Cr₂₁W₂C₆, as well as quaternary Cr₂₁(Mo, W)₂C₆ carbides was observed in alloys containing Cr, W and Mo.

Accurate description of the stability and solubility of d-elements in these carbides is crucial for understanding of the microstructure and properties of alloys with the carbide precipitates because the precipitate stability correlates with increased creep resistance [7]. The density functional theory (DFT) methods are useful to study the structural and electronic properties, as well as to predict the phase stability and impurity localization in very good agreement with experiment. The binary $M_{23}C_6$ carbides

^{*} Corresponding author. Tel.: +7 3433743554; fax: +7 343 3744495. E-mail address: medvedeva@ihim.uran.ru (N.I. Medvedeva).

(M = Mn, Cr, Fe) were studied by the ab initio method [16–19], and Cr₂₃C₆ and Mn₂₃C₆ were found to be stable with a large negative formation energy E_{form} . For Fe₂₃C₆, the calculations showed a small positive E_{form} , which is even lower than those for other iron carbides – Fe₃C, Fe₁₂C and Fe₆C [16]. The first-principles calculations [17] also predicted Fe₂₃C₆ to be more stable than Fe₃C; it was also demonstrated that the GGA approximation for exchange-correlation potential provides the results for Fe₂₃C₆ that are in better agreement with experiment than those obtained within GGA + U method including the on-site Coulomb interaction on Fe atom. The stability and mechanical properties of the ternary carbides (Cr, Fe)23C6 were investigated as dependent on the Fe concentration [17-21]. The atomistic approach based on the interatomic potentials was used to study the structural and thermodynamic properties of $(Cr, M)_{23}C_6$ and $(Fe, M)_{23}C_6$ (M = Mo, W) [21]. Both tungsten and molybdenum impurities were predicted to increase the stability of Cr₂₃C₆ and Fe₂₃C₆ and to favor hardenability.

In this paper we study the stability of binary $M_{23}C_6$ (M = V, Cr, Mn, Fe, Co, Ni), ternary (M, W)₂₃C₆ (M = Cr, Fe, Co, Ni) and quaternary (M, Cr, W)₂₃C₆ (M = Fe, Co, Ni) carbides. We discuss the effect of tungsten on the stability of (M, Cr)₂₃C₆ and solubility of 3*d*-transition elements.

2. Computational method

We used the projector augmented waves (PAW) method as implemented in the Vienna ab initio simulation package (VASP) [22,23] and the generalized gradient approximation (GGA) for the exchange correlation functional [24]. The plane waves with the kinetic energy up to 400 eV were employed to expand the electronic wave functions. The Brillouin-zone integrations were carried out on $8 \times 8 \times 8$, $10 \times 10 \times 10$ and $16 \times 16 \times 16$ k-point grids according to the Monkhorst-Pack scheme for the binary and ternary carbides, and elemental phases, respectively. We used the Methfessel–Paxton smearing with parameter σ = 0.2 eV that provides accurate description of the total energy for metals [25]. All calculations were spin-polarized that allowed us to study magnetism in these carbides. The equilibrium structures were obtained by the conjugate gradient method when the Hellmann-Feynman forces on atoms were less than 0.1 eV/Å. To study the phase stability, the formation energy was calculated as a total energy difference between carbide and constituted elements in their stable states. We have not considered the vibration contribution because of the complexity of crystal structure (there are 116 atoms in the unit cell of M₂₃C₆) and used the formation energy estimated at T = 0 K for prediction of carbide stability.

3. Results and discussion

3.1. Binary $M_{23}C_6$ carbides

The lattice parameters and atomic coordinates for binary carbides $M_{23}C_6$ (M = V, Cr, Mn, Fe, Co, Ni) are shown in Table 1 along with the previous theoretical results. The $M_{23}C_6$ carbide crystal-

lizes in space group Fm_3m (Z = 4) and contains four nonequivalent metal M1 (4a), M2 (8c), M3 (32f) and M4 (48h) positions with coordinates (0,0,0), (0.25,0.25,0.25), (x,x,x) and (0,y,y), respectively, and carbon atoms are in (24e) site with coordinate (z,0,0). We found that the lattice parameter of M $_{23}C_6$ follows the ion radii of d-metal decreasing from V to Ni and increasing from Cr to Mo and W (Table 1).

In ferromagnetic Fe₂₃C₆ and Co₂₃C₆, the local magnetic moment on metal atoms strongly depends on their site location and equals 2.51 (1.63), 2.80 (2.01), 1.76 (0.74) and $2.14 (1.28) \mu_B$ for Fe (Co) in the M1, M2, M3 and M4 sites, respectively. The largest moments correspond to the M2 site with (4M3 + 12M4) nearest neighbors followed by the M1 site with 12 M4 nearest neighbors. The metal substitutions into M3 and M4 sites, which have both the metal and carbon neighbors, demonstrate smaller magnetic moments. As a result, the average magnetic moments on the Fe (2.0 μ_B) and Co $(1.2 \mu_B)$ atoms in $M_{23}C_6$ are less than those in the corresponding metal phases (2.2 μ_B and 1.6 μ_B in bcc Fe and hcp Co, respectively) due to the carbon effect. For Mn23C6 we obtained two ferrimagnetic configurations that have various magnetic ordering of the Mn atoms and differ by only 4 meV/atom. The local magnetic moments on the Mn atoms in the M1, M2, M3 and M4 positions are -1.64, -2.47, 1.43 and 0.73 μ_B , respectively, for stable state with lattice parameter of 10.396 Å; and 1.46, -2.33, 1.32 and $0.59 \mu_B$, respectively, for a less stable state with lattice parameter of 10.381 Å. Magnetic moments of M2, M3 and M4 atoms are similar for both states, where the manganese magnetic moment of M2 is antiparallel to those of M3 and M4. Both parallel and antiparallel magnetic moments are possible for Mn in the M1 site that points out the magnetic instability known in several manganese alloys and compounds (see for example, [26,27]). Small difference in energies for these competing configurations suggests that the Mn spins on M1 sites are able to fluctuate thermally. All other M₂₃C₆ phases including Cr₂₃C₆ are nonmagnetic.

The calculated lattice parameters and fractional coordinates are in good agreement with the available experimental data and previous theoretical results. For Cr₂₃C₆, our calculations predict the M3, M4 and C coordinates to be x = 0.381, y = 0.166, and z = 0.276, whereas x = 0.385, y = 0.165, and z = 0.275 were obtained from experiment and close values x = 0.3809, y = 0.1699, and z = 0.2767 were found in *ab initio* calculations [16]. The formation energies of $V_{23}C_6$, $Cr_{23}C_6$ and $Mn_{23}C_6$ are negative and these phases are the most stable among the considered $M_{23}C_6$ carbides (Table 1). Small positive energies were obtained for Fe₂₃C₆ so that its formation seems possible under specific conditions. It should be noted that $Fe_{23}C_6$ was predicted [16,18] to be more stable than cementite Fe₃C, which is iron carbide that provides high strength and hardness in steel. The Co₂₃C₆ and Ni₂₃C₆ carbides have the large positive formation energies and they were not observed in steels as binary $M_{23}C_6$ phases.

The trends in stability of $M_{23}C_6$ compounds seem to be similar to those for the MC carbides with NaCl-structure where the destabilizing effect also increases with the atomic number of the transition metal across the period. The early transition metals (V, Ti)

Lattice parameter a (Å), atomic coordinates (x, y and z) and formation energy E_{form} (meV/atom) for binary $M_{23}C_6$ carbides.

	Ti ₂₃ C ₆	$V_{23}C_{6}$	$Cr_{23}C_6$	$Mn_{23}C_6$	Fe ₂₃ C ₆	Co ₂₃ C ₆	Ni ₂₃ C ₆
а	11.5824	10.9520	10.5265, 10.5280 ^a	10.3959 10.3966 ^a	10.4642, 10.4668 ^a	10.3253	10.3568
M3 (32f), x	0.3850	0.3849	0.3809	0.3820	0.3838	0.3832	0.3838
M4 (48h), y	0.1632	0.1651	0.1658	0.1603	0.1606	0.1644	0.1606
C (24e), z	0.2745	0.2732	0.2759	0.2757	0.2767	0.2766	0.2767
$E_{ m form}$	-268	-292	−105 −91 ^a	$-254 \\ -250^{a}$	+24 +19.5 ^a	+93	+96

^a Theoretical predictions from Refs. [16,17].

Download English Version:

https://daneshyari.com/en/article/10644486

Download Persian Version:

 $\underline{https://daneshyari.com/article/10644486}$

Daneshyari.com