
Spatial Statistics 14 (2015) 382–399

Contents lists available at ScienceDirect

Spatial Statistics

journal homepage: www.elsevier.com/locate/spasta

Transformed Gaussian Markov random fields
and spatial modeling of species abundance
Marcos O. Prates a,∗, Dipak K. Dey b,c,d, Michael R. Willig c,e,
Jun Yan b,c,d

a Department of Statistics, Universidade Federal de Minas Gerais, Avenida Antôni Carlos, 6627,
Belo Horizonte, Brazil
b Department of Statistics, University of Connecticut, Storrs, CT 06269, USA
c Center for Environmental Sciences & Engineering, University of Connecticut, Storrs, CT 06269, USA
d Institute for Public Health Research, University of Connecticut Health Center, East Hartford,
CT 06108, USA
e Department of Ecology & Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA

a r t i c l e i n f o

Article history:
Received 1 August 2014
Accepted 11 July 2015
Available online 29 July 2015

Keywords:
Bayesian inference
Beta field
Gamma field
Gaussian copula
Generalized linear mixed model

a b s t r a c t

Gaussian random field and Gaussian Markov random field have
been widely used to accommodate spatial dependence under the
generalized linear mixed models framework. To model spatial
count and spatial binary data, we present a class of transformed
Gaussian Markov random fields, constructed by transforming the
margins of aGaussianMarkov random field to desiredmarginal dis-
tributions that accommodate asymmetry and heavy tail, as needed
in many empirical circumstances. The Gaussian copula that char-
acterizes the dependence structure facilitates inferences and ap-
plications in modeling spatial dependence. This construction leads
to new models such as gamma or beta Markov fields with Gaus-
sian copulas, that are used tomodel Poisson intensities or Bernoulli
rates in hierarchical spatial analyses. The method is naturally im-
plemented in a Bayesian framework. To illustrate our methodol-
ogy, abundances of variety of gastropod species were collected
as counts or presence versus absence from a network of spatial
locations in the Luquillo Mountains of Puerto Rico. Gastropods
are of considerable ecological importance in terrestrial ecosystems
because of their species richness, abundances, and critical roles
in ecosystem processes such as decomposition and nutrient cy-
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cling. The newmodels outperform the traditional models based on
Bayesian model comparison with conditional predictive ordinate.
The validity of Bayesian inferences and model selection were as-
sessed through simulation studies for both spatial Poisson regres-
sion and spatial Bernoulli regression.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Spatial count or binary data are generally analyzedwith a generalized linearmixedmodel (GLMM),
where spatial dependence is captured by Gaussian random field (GRF) effects (e.g., Breslow and Clay-
ton, 1993). When data are point-referenced or geostatistical, and prediction at unobserved sites is of
main concern, Diggle et al. (1998) extended the kriging method to the spatial GLMM (SGLMM) with
GRF random effects to predict the surface of the spatial random effects. Under this scheme, Chris-
tensen and Waagepetersen (2002) developed predictions for the count of weeds at unobserved sites
over a region. For lattice or areal data, as is the case in our application, a Markov dependence with an
appropriate neighborhood structure is often imposed on the GRF random effects, which offers both
intuitive interpretation and computational advantages. A Gaussian Markov random field (GMRF) is
represented by an undirected graph, and is more naturally defined through its precision matrix. The
(i, j)th entry of the precision matrix is nonzero if and only if i and j are connected in the graph (Rue
and Held, 2005). GLMMs with random effects of GMRF have been used in many fields. Because of the
public concerns regarding global change and public health, recent applications have surged in envi-
ronmental sciences (e.g., Wikle et al., 1998; Rue et al., 2004) and epidemiology (e.g., Besag et al., 1991;
Schmid and Held, 2004).

We propose a hierarchical spatial generalized linear model (GLM) that is subtly different from
the GLMM with GRF random effects. At the first level, the observed data are independent Poisson
or Bernoulli variables given the Poisson intensities or Bernoulli rates. At the second level, the Poisson
intensities or Bernoulli rates are modeled by a transformed GRF (TGRF) such that the marginal distri-
butions are of any desired form. Similarly, a transformed GMRF (TGMRF) can be defined if the GRF is
a GMRF, and the Markov property is retained regardless of the transformations. With gamma or beta
margins, this leads to gamma fields or beta fields for modeling Poisson intensities or Bernoulli rates,
respectively. Our specification offers new avenues to construct hierarchical spatial GLMs and a fresh
look at common SGLMMswith GRF random effects. Clearly, the new frameworkwill facilitate the def-
inition of an adequate marginal distribution for the mean parameters that is not necessarily a simple
task in the conditional modeling framework. Moreover, the dependence structure is kept unchanged
in the TGMRF because of the use of the Gaussian copula and, therefore, the interpretation of the β pa-
rameters are kept unchanged. A limitation of the new methodology in comparison to the traditional
conditional approach is that, although it can be done, extension of the model to include more random
effects, e.g. temporal effects, is not as trivial as it is in additivemodels. Inferences are conducted in the
Bayesian framework with a general purpose, easy-to-implement Gibbs sampling algorithm.

The essence of TGRF or TGMRF is the Gaussian copula (Nelsen, 2006; Song, 2000; Masarotto and
Varin, 2012), which has been used under other terminologies in various contexts. For multivariate
data, it is equivalent to the Gaussian copula regression model (Pitt et al., 2006), where the response
vector may be a combination of discrete and continuous variables. Under a graphical model frame-
work it is similar to the copula Gaussian graphical model of Dobra and Lenkoski (2011), where the
dependence structure determined by the precision matrix is of specific interest. In some fields such
as hydrology, it is named as meta-Gaussian distribution (e.g., Guillot and Lebel, 1999; Schaake et al.,
2007). In geostatistics with point-referenced data, it is called the anamorphosis Gaussian field (Chilès
and Delfiner, 1999) or Gaussian copula model (Bárdossy, 2006; Kazianka and Pilz, 2010), where the
main interest of thesemodels has being interpolation and prediction at unmeasured locations. For this
setup, aMatlab toolbox implementation is available (Kazianka, 2013). Most geostatistical applications
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