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A stationary spatial model is an idealization and we expect
that the true dependence structures of physical phenomena are
spatially varying, but how should we handle this non-stationarity
in practice? We study the challenges involved in applying a flexible
non-stationary model to a dataset of annual precipitation in the
conterminous US, where exploratory data analysis shows strong
evidence of a non-stationary covariance structure.

The aim of this paper is to investigate the modelling pipeline
once non-stationarity has been detected in spatial data. We show
that there is a real danger of over-fitting the model and that careful
modelling is necessary in order to properly account for varying
second-order structure. In fact, the example shows that sometimes
non-stationary Gaussian random fields are not necessary to model
non-stationary spatial data.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

There are, in principle, two sources of non-stationarity present in any dataset: the non-stationarity
in the mean and the non-stationarity in the covariance structure. Classical geostatistical models
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based on stationary Gaussian random fields (GRFs) ignore the latter, but include the former through
covariates that capture important structure in the mean. The focus of non-stationary spatial modelling
is non-stationarity in the covariance structure. However, it is impossible to separate the non-
stationarity in the mean and the non-stationarity in the covariance structure based on a single
realization, and even with multiple realizations it is challenging.

The Karhunen-Loéve expansion states that under certain conditions a GRF can be decomposed
into an infinite linear combination of orthogonal functions, which is weighted by independent
Gaussian variables with decreasing variances. For a single realization these orthogonal functions will
be confounded with the covariates in the mean, and the mean structure and the covariance structure
cannot be separated. This can give apparent long range dependencies and global non-stationarity if
spatially varying covariates are missing in the mean. Such spurious global non-stationarity and its
impact on the local estimation of non-stationarity is an important topic in the paper.

A high degree of flexibility in the covariance structure combined with weak information about the
covariance structure in the data makes overfitting by interpreting ostensible patterns in the data as
non-stationarity a critical issue. However, the most important point from an applied viewpoint is the
computational costs of running a more complex model versus the scientific gain. Non-stationarity in
the mean is computationally cheap, whereas methods for non-stationarity in the covariance structure
are much more expensive. This raises two important questions: How much do we gain by including
non-stationarity in the covariance structure? What sort of non-stationarity, if any, is most appropriate
for the problem at hand?

The computational cost of non-stationary models usually comes from a high number of highly
dependent parameters that makes it expensive to run MCMC methods or likelihood optimizations,
but the challenges with non-stationary models are not only computational. Directly specifying
non-stationary covariance functions is difficult and we need other ways of constructing models.
Additionally, we need to choose where to put the non-stationarity. Should we have non-stationarity
in the range, the anisotropy, the marginal variance, the smoothness or the nugget effect? And how do
we combine it all to a valid covariance structure?

1.1. Non-stationarity

Most of the early literature on non-stationary methods deals with data from environmental
monitoring stations where multiple realizations are available. In this situation it is possible to
calculate the empirical covariances between observed locations, possibly accounting for temporal
dependence, and finding the required covariances through, for example, shrinkage towards a
parametric model (Loader and Switzer, 1989) or kernel smoothing (Oehlert, 1993). It is also possible
to deal efficiently with a single realization with the moving window approach of Haas (1990a,b, 1995),
but this method does not give valid global covariance structures.

However, the most well-known method from this time period is the deformation method
of Sampson and Guttorp (1992), in which an underlying stationary process is made non-stationary
by applying a spatial deformation. The original formulation has been extended to the Bayesian
framework (Damian et al., 2001, 2003; Schmidt and O’Hagan, 2003), to a single realization (Anderes
and Stein, 2008), to covariates in the covariance structure (Schmidt et al., 2011) and to higher
dimensional base spaces (Bornn et al., 2012).

Another major class of non-stationary methods is based on the process convolution method
developed by Higdon (1998) and Higdon et al. (1999). In this method a spatially varying kernel
is convolved with a white noise process to create a non-stationary covariance structure. Paciorek
and Schervish (2006) looked at a specific case where it is possible to find a closed form expression
for a Matérn-like covariance function and Neto et al. (2014) used a kernel that depends on wind
direction and strength to control the covariance structure. The process convolution methods have
also been extended to dynamic multivariate processes (Calder, 2007, 2008) and spatial multivariate
processes (Kleiber and Nychka, 2012).

It is possible to take a different approach to non-stationarity, where instead of modelling infinite-
dimensional Gaussian processes one uses a linear combination of basis functions and models
the covariance matrix of the coefficients of the basis functions (Nychka et al., 2002, 2015). One
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