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a b s t r a c t

We tackle themodeling of threshold exceedances in asymptotically
independent stochastic processes by constructions based on
Laplace random fields. Defined as mixtures of Gaussian random
fields with an exponential variable embedded for the variance,
these processes possess useful asymptotic properties while
remaining statistically convenient. Univariate Laplace distribution
tails are part of the limiting generalized Pareto distributions for
threshold exceedances. After normalizing marginal distributions
in data, a standard Laplace field can be used to capture spatial
dependence among extremes. Asymptotic properties of Laplace
fields are explored and compared to the classical framework of
asymptotic dependence. Multivariate joint tail decay rates are
slower than for Gaussian fieldswith the same covariance structure;
hence they provide more conservative estimates of very extreme
joint risks while maintaining asymptotic independence. Statistical
inference is illustrated on extreme wind gusts in the Netherlands
where a comparison to the Gaussian dependence model shows a
better goodness-of-fit. In this application we fit the well-adapted
Weibull distribution, closely related to the Laplace distribution, as
univariate tail model.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Extreme value analysis provides a toolbox for modeling and estimating extreme events in
univariate, multivariate, spatial and spatiotemporal processes (Coles, 2001; Beirlant et al., 2004;
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Davison et al., 2012). Principal objectives of spatial extreme value analysis are the spatial prediction
of extremes and the extrapolation of return levels and periods beyond the historically observed range
of data. A major distinction of dependence types can be made between asymptotic dependence when
limu↑1 pr(FX2(X2) ≥ u | FX1(X1) ≥ u) > 0 for two random variables X1 ∼ FX1 and X2 ∼ FX2 and
asymptotic independencewhen the limit is 0, provided the limit exists. Asymptotic independence can
arise in environmental and climatic data for space lags or time lags when the most extreme events
become more and more isolated in time, space or space–time. For many processes like wind gust
speed or heavy rainfall such behavior seems plausible owing to physical limits, and it is corroborated
by empirical findings (Davison et al., 2013; Thibaud et al., 2013; Opitz et al., 2015). In this paper, our
objective is to construct asymptotically independent spatial processes that are flexible and tractable
models with useful properties for modeling threshold exceedances.

Models for asymptotically independent extremesmust adequately capture the joint tail decay rates
in multivariate distributions. A first in-depth analysis of joint tail decay was given by Ledford and
Tawn (1996, 1997). Closely related bivariate models (Ramos and Ledford, 2009) provide flexibility
in the joint tail, yet an explicit definition of the probability density cannot be given when only
one component is extreme and the generalization to higher dimensions suffers from the curse of
dimensionality. A more flexible characterization of multivariate tail behavior was developed by
Wadsworth and Tawn (2013). Useful models pertaining to this framework are obtained by inverting
max-stable processes (Wadsworth and Tawn, 2012), allowing for composite likelihood inference.
Another approach that spans both asymptotically dependent and asymptotically independent data is
presented by Wadsworth et al. (2014), who model bivariate tails by assuming independence among
the radial and the angular variable in a pseudo-polar representation.

For lack of a unified theory of asymptotic independence, a variety of modeling approaches have
proven useful in practice. They usually suffer from at least one of the following restrictions: joint
tail decay rates are difficult to characterize; standard inference methods like classical likelihood
are not available; only bivariate models are tractable and useful; the generalization to the infinite-
dimensional, spatial setup is not possible; the univariate tail models prescribed by extreme value
theory do not directly appear as marginal distributions in the model, necessitating marginal
pretransformations that are not natural in the extreme value context.

In the following, we present the novel Laplace model for multivariate and spatial extremes.
It provides a good compromise with respect to the aforementioned potential shortcomings. It is
parametrized by a covariance function and closely related to standard Gaussian processes based
on embedding an exponentially distributed variable for the variance. The resulting univariate
distributions are of the Laplace type, and the univariate tails correspond to valid generalized
Pareto limits of threshold exceedances. Classical likelihood inference using threshold exceedances is
straightforward. Joint tail decay rates and conditional distributions can be characterized in various
ways. We use the terminology of spatial processes for simplicity’s sake, but an extension to the
spatiotemporal context is possible through spatiotemporal covariance functions. The notion of a
multivariate threshold exceedance is not uniquely defined; here we will concentrate on four sensible
choices for extreme value analysis: exceedances observed at one fixed site s, exceedances of a linear
combination of values at D fixed sites, or exceedances of either the maximum orminimum value over
D fixed sites.

Section 2 gives a short exposition of some aspects of classical extreme value theory that are
necessary to understand univariate tail models, their link to standard Laplace marginal distributions
and the notion of asymptotic independence. Section 3 treats definition and inference of the
asymptotically independent Laplace model for threshold exceedances, whose tail behavior is
characterized and contrasted with the asymptotic dependence case. An application to modeling of
spatial wind gust extremes in the Netherlands in Section 4 is followed by the concluding remarks in
Section 5.

2. Extreme value theory

Presentations going beyond this short account can be found in Resnick (1987), Beirlant et al. (2004)
and de Haan and Ferreira (2006).
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