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In this paper, a new model for second order non-stationary
random functions as a convolution of an orthogonal random
measure with a spatially varying random weighting function is
introduced. The proposed model is a generalization of the classical
convolution model where a non-random weighting function is
considered. For a suitable choice of the random weighting functions
family, this model allows to easily retrieve classes of closed-form
non-stationary covariance functions with locally varying geometric
anisotropy existing in the literature. This offers a clarification of
the link between these latter and a convolution representation,
thereby allowing a better understanding and interpretation of their
parameters. Under a single realization and a local stationarity
framework, a parameter estimation procedure of these classes of
explicit non-stationary covariance functions is developed. From
a local stationary variogram kernel estimator, a weighted local
least-squares method in combination with a kernel smoothing
method is used to estimate efficiently the parameters. The
proposed estimation method is applied on soil and rainfall datasets.
It emerges that this non-stationary method outperforms the
traditional stationary method, according to several criteria. Beyond
the spatial predictions, we also show how conditional simulations
can be carried out in this non-stationary framework.
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1. Introduction

Estimation and modeling of the underlying spatial dependence structure of data are key elements
for kriging and conditional simulations. Simplifying assumptions are often made on the spatial
dependence structure. They include the stationarity assumption where the second order association
between location pairs is assumed to depend only on the vector between these locations. However,
it has become increasingly clear that this assumption is driven more by mathematical convenience
than by reality. In practice, it may be doubtful due to many factors, including specific landscape and
topographic features of the study domain or other localized effects. These local influences can be
reflected by computing local stationary variograms whose characteristics may vary across the study
domain. In such cases, a stationary approach may be not suitable because it could provide less accurate
predictions, including an incorrect assessment of the prediction error.

Various approaches have been developed over the years, to deal with non-stationarity through
second order moments (Guttorp and Schmidt, 2013; Sampson et al., 2001; Guttorp and Sampson,
1994). One of the most popular methods of introducing second order non-stationarity is the
convolution approach developed by Higdon (1998) and Higdon et al. (1999). It involves taking a spatial
white noise, then averaging it using weights that vary spatially to thereby obtain a second order
non-stationary random function. In this way, the resulting spatial dependence structure is allowed
to vary across the domain of interest. Higdon (1998) and Higdon et al. (1999) use a spatially varying
Gaussian kernel function to induce a non-stationary covariance function. This latter has a closed-
form with locally varying geometric anisotropy but is infinitely differentiable which may not be
desirable for modeling real phenomena (Stein, 1999). Zhu and Wu (2010) choose a family of spatially
varying modified Bessel kernel functions to produce a non-stationary covariance function with local
smoothness characteristics that are similar to the Matérn class of stationary covariance functions.
One limitation of this approach is that the resulting non-stationary covariance function does not
have a closed-form and, in general, can only be evaluated using numerical integration. Moreover, this
approach does not take into account the locally varying geometric anisotropy.

Furthermore, a class of explicit non-stationary covariance functions with locally varying geometric
anisotropy have been developed by Paciorek and Schervish (2006) and Stein (unpublished report).
However, all these classes of analytical non-stationary covariance functions with locally varying
geometric anisotropy do not directly derived from a random function model like the convolution
representation or the spectral representation. Thus, this does not facilitate their understanding and
particularly the interpretation of their parameters. It is useful to have a constructive approach
for random functions admitting such closed-form non-stationary covariance functions with locally
varying geometric anisotropy. Moreover, the estimation of parameters that govern these latter
remains a critical problem. Paciorek and Schervish (2006) enumerate some difficulties and suggest
some possible methods including the moving windows approach based on the variogram or the
likelihood. Anderes and Stein (2011) mention two typical problems arising with moving windows
method. Firstly, the range of validity of a stationary approximation can be too small to contain
enough local data to estimate reliably the local spatial dependence structure. Secondly, it can produce
non-smooth parameter estimates, leading to discontinuities on the kriging map which is undesirable
in many applications. Anderes and Stein (2011) propose a weighted local likelihood approach
where the influence of faraway observations is smoothly down-weighted. The drawbacks related to
this approach are the computational burden of inverting covariance matrices at every location for
parameter estimation and the Gaussian distributional assumption for analytical tractability.

In this work, we are interested primarily in establishing a link between existing classes of explicit
non-stationary covariance functions with locally varying geometric anisotropy and a convolution
representation. To achieve that, we introduce a new model for second order non-stationary random
functions as a convolution of an orthogonal random measure, with a spatially varying stochastic
weighting function. This is an extension of the common convolution model where a deterministic
weighting function is used. This construction bears some resemblance with the moving average model
with stochastic weighting function introduced by Matérn (1986), in order to build some isotropic
stationary covariance functions like Matérn and Cauchy families. From this modeling approach,
we easily retrieve classes of closed-form non-stationary covariance functions with locally varying
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