
Spatial Statistics 16 (2016) 152–167

Contents lists available at ScienceDirect

Spatial Statistics

journal homepage: www.elsevier.com/locate/spasta

A comparison of plug-in predictors for
lognormal kriging
Christien Thiart ∗, Linda M. Haines
Department of Statistical Sciences, University of Cape Town, Cape Town, South Africa

a r t i c l e i n f o

Article history:
Received 15 October 2015
Accepted 6 March 2016
Available online 16 March 2016

Keywords:
Lognormal kriging
‘plug-in’ estimators
Empirical mean squared prediction error
Optimal point prediction
Ordinary kriging
Unknown covariance parameters

a b s t r a c t

When skewed spatial data are encountered, a common procedure
is to invoke lognormal kriging. The resultant naïve lognormal
predictors are however biased. A family of optimal predictors
which address this unbiasedness has been introduced into the
literature by De Oliveira (2006). The behaviour of this family is
well documented in the case of known covariance parameters.
In contrast, when the covariance parameters are not known and
must be estimated, the behaviour of the predictors is unknown.
In the present paper, the performance of a subset of the family
of predictors formulated by De Oliveira (2006), together with a
predictor introduced by Abt et al. (1999), with ‘plug-in’ estimates
of the covariance parameters introduced into the appropriate
theoretical formulae, is investigated by means of a simulation
study. Results based on eighteen scenarios describing a range of
covariance structures and three performance criteria are presented
and, in addition, results for a real world example are reported. The
main features to emerge from the study are that the naïve predictor
is negatively biased, that the lognormal predictor is representative
of key predictors in the class introduced by De Oliveira (2006)
and that the empirical mean squared prediction error severely
underestimates the true value.
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1. Introduction

Kriging is used extensively in the modelling of spatial data. The approach is rooted in the notion
of minimizing the mean squared prediction error at an unobserved location. The only assumption
made in the broad-based derivation of kriging is that of stationarity in the underlying error structure.
When the data are assumed to follow a multivariate Gaussian distribution, the expectation of the
best predictor is both linear and unbiased. When the data are not multivariate Gaussian however,
the predictor may not be linear or unbiased. It is then common practice to adopt a transformation of
the non-normal data to yield data which follow a Gaussian or an approximate Gaussian distribution.
For skewed spatial data, it is usual to assume that the observations are log-normally distributed
and can therefore be transformed by taking logarithms to create a pseudo-Gaussian random field.
Kriging can then be performed on the transformed data and best linear unbiased predictors within the
Gaussian setting obtained. This procedure is commonly known as lognormal kriging and is, in essence,
a special case of trans-Gaussian kriging (Matheron, 1974; Journel, 1980; Cressie, 1993; Chiles and
Delfiner, 1999; Diggle and Ribeiro, 2007). Many researchers advocate back-transforming the Gaussian
predictors to yield lognormal predictors but some do not agree with this approach, preferring to leave
the results within the Gaussian setting.

The moments of the log-normal, that is log-Gaussian, distribution are well-documented and can
be formulated explicitly in terms of the moments of the underlying Gaussian distribution (Aitchison
and Brown, 1957). Thus it is straightforward to show that the lognormal predictor obtained directly
by taking the exponential of the corresponding Gaussian predictor is biased. As a consequence,
other lognormal predictors which in some sense counter this bias, have been proposed and analytic
expressions for the associated biases and mean squared prediction errors (MSPEs) have been derived
under the assumption that the covariance parameters embedded in the model are known (Cressie,
2006; De Oliveira, 2006). In practice however the covariance parameters are invariably not known
andmust be estimatedwithin the Gaussian framework. Lognormal predictors and the attendantmean
squared prediction errors can then be evaluated by ‘plugging’ estimates of the covariance parameters
into the appropriate expressions derived under the assumption that the parameters are known. A
good predictor in the Gaussian setting does not necessarily transform to a good predictor in the
lognormal setting however and, furthermore, the behaviour of the empirical mean squared prediction
errors associatedwith the lognormal predictors would seem to be unclear. These important points are
emphasized in the book by Rossi and Deutsch (2014).

De Oliveira (2006) introduced a family of lognormal point predictors which are optimal under
a range of criteria and which are expressed in terms of an unknown mean but known covariance
parameters. In the present study, the properties of five predictors belonging to this family and a sixth
predictor introduced byAbt et al. (1999) are examined for settings inwhich the covariance parameters
of the underlying model are not known and must be estimated. More specifically, the performance of
the six lognormal predictors with respect to bias and mean squared prediction error under eighteen
scenarios based on the parameters of an exponential covariance model is investigated by means of
a simulation study. The paper is organized as follows. The basic notions which underpin lognormal
kriging are presented in the section entitled Theory. The simulation study is described in the next
section and the results are summarized and discussed in the two sections which then follow. A case
study is reported in the penultimate section and some conclusions and pointers for further research
are given in the final section.

2. Theory

2.1. Setting

Let Z = [Z(s1), . . . , Z(sn)]T denote a vector of observed responses of an attribute Z at n locations,
s1, . . . , sn, in a domain D and suppose that a prediction of the response at an unobserved location s0,
that is Z0 = Z(s0), is required. Assume that the vector [Z0, Z]

T can be expressed as the exponential of a
vector [Y0, Y ]

T , that is [Z0, Z]
T

= exp([Y0, Y ]
T ), where [Y0, Y ]

T
= [Y (s0), Y (s1), . . . , Y (sn)]T follows
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