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a b s t r a c t

Most modern spatially indexed datasets are very large, with sizes
commonly ranging from tens of thousands to millions of loca-
tions. Spatial analysis often focuses on spatial smoothing using
the geostatistical technique known as kriging. Kriging requires co-
variance matrix computations whose complexity scales with the
cube of the number of spatial locations, making analysis infeasi-
ble or impossible with large datasets. We introduce an approach to
kriging in the presence of large datasets called equivalent kriging,
which relies on approximating the krigingweight function using an
equivalent kernel, requiring presence of a nontrivial nugget effect.
Resulting kriging calculations are extremely fast and feasible in the
presence of massive spatial datasets. We derive closed form krig-
ing approximations formultiresolution classes of spatial processes,
as well as under any stationary model, including popular choices
such as theMatérn. The theoretical justification for equivalent krig-
ing also leads to a correction term for irregularly spaced observa-
tions that also reduces edge effects near the domain boundary. For
large sample sizes, equivalent kriging is shown to outperform co-
variance tapering in an example. Equivalent kriging is additionally
illustrated on multiple simulated datasets, and a monthly average
precipitation dataset whose size prohibits traditional geostatistical
approaches.
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1. Introduction

In the era of big data, spatially indexed datasets are especially prone to size-induced limitations.
Indeed,modern atmospheric, hydrologic, ecological and environmental datasets are increasingly large
and complex, often involving data sited at between thousands and millions of locations. A major
goal when faced with such complex and noisy data is estimating the underlying physical process
whose observations are subject to noise. In geostatistics, the main tool used for surface estimation is
kriging, which is the linear predictor that minimizes predictive squared loss, assuming known model
parameters.

Themain obstacle for kriging on large datasets is solving a linear system of equations involving the
spatial covariance matrix. This covariance matrix is usually dense and unstructured, and has size that
scales as the square of the number of spatial locations. Over the past decade there have been a number
of proposed approaches to kriging on large datasets. Many of the most popular techniques rely on a
low rank representation for the spatial covariance matrix. For instance, fixed rank kriging achieves
low rank by representing spatial covariances via a small set of basis functions in the observation
domain (Cressie and Johannesson, 2008). Similarly, predictive processes use a conditional expectation
representation at a small set of knots in the observation domain that leads to a low rank type setup
(Banerjee et al., 2008). An alternative approach is covariance tapering, using a compactly supported
function to impose sparsity in the covariance matrix (Furrer et al., 2006; Kaufman et al., 2008). One of
the criticisms of low rank ideas is that they tend to capture low frequency behavior quite well, but are
unable to model well high frequency behavior (Finley et al., 2009). To overcome this problem, an idea
that retains computational feasibility is to use a low rank representation of spatial covariance, and
superimpose a high frequency term that is generated by a compactly supported covariance; Sang and
Huang (2012) named this approach a full scale approximation, see also Stein (2008). Finally, a simple
alternative is to window the data and perform kriging locally; Stein (2014) found this approach to be
favorable to low rank methods in approximating likelihoods.

Amore recent idea involves approximating a Gaussian random field by a GaussianMarkov random
field (Lindgren et al., 2011). This approach is computationally extremely fast for very large datasets,
but is designed for processes with Matérn covariances, and can only approximate the restrictive
subclass whose smoothnesses are integer plus one half values. A somewhat related approach is a
multiresolution representation of the underlying stochastic field, a specific class of which has been
developed very recently by Nychka et al. (in press), which they term LatticeKrig. A computationally
expensive step common to many models is evaluating the likelihood (or Bayesian posterior) to
determine variance and covariance parameters; some approaches to likelihood approximations have
been proposed, involving an approximate gridding of the observations and using techniques for
regular lattices (Fuentes, 2007). Sun et al. (2012) give an overview of some of the aforementioned
techniques and others.

We propose a novel approach to kriging over large datasets called equivalent kriging. Equivalent
kriging relies on approximating the kriging weights using an equivalent kernel via ideas that have
previously been confined to the spline literature (Silverman, 1984). This approximation’s primary
limitation is that it is only valid with a nonzero nugget effect, akin to spline smoothing. The equivalent
kernel is available in closed form for multiresolution processes, and has a representation as a Hankel
transform for kriging with any isotropic covariance function. Specifically, we can approximate kriging
under a Matérn covariance with an arbitrary smoothness, improving upon many of the previously
proposed techniques. We explore both gridded and irregularly spaced data situations. Estimation
can proceed by cross-validation or generalized cross-validation, as the smoothing matrix is quickly
computable using the equivalent kernel approximation. We follow the technical discussion with data
examples, empirically illustrating the computational advantages of equivalent kriging over traditional
kriging.

As a suggestion of the timing improvements of equivalent kriging over traditional kriging, Fig. 1
illustrates a simple example. The goal is to smooth a set of noisy observations on an n × n grid by
kriging or equivalent kriging using an exponential covariancemodelwith a nugget effect. The grid is on
[0, 2π ]

2 with the exponential scale set to unity. Timing comparisons are shown in seconds for between
approximately n2

= 700 and 10000 total locations. For even moderately large datasets, equivalent
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