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a b s t r a c t

Computer models are often deterministic simulators used to pre-
dict several environmental phenomena. Such models do not asso-
ciate any measure of uncertainty with their output since they are
derived from deterministic specifications. However, many sources
of uncertainty exist in constructing and employing numericalmod-
els.

We are motivated by temperature maps arising from the Rapid
Update Cycle (RUC) model, a regional short-term weather forecast
model for the continental United States (US) which provides
forecast maps without associated uncertainty.

Despite a rapidly growing literature on uncertainty quantifi-
cation, there is little regarding statistical methods for attaching
uncertainty tomodel outputwithout information about howdeter-
ministic predictions are created. Although numerical models pro-
duce deterministic surfaces, the output is not the ‘true’ value of the
process and, given the true value and the model output, the as-
sociated error is not stochastic. However, under suitable stochas-
tic modeling, this error can be interpreted as a random unknown.
Then,we infer about this error using aBayesian specificationwithin
a data fusion setting, fusing the computer model data with some
external validation data collected independently over the same
spatial domain. Illustratively, we apply our modeling approach to
obtain an uncertainty map associated with RUC forecasts over the
northeastern US.
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1. Introduction

Many computer models are deterministic simulation models developed, for example, to predict
environmental phenomena such as temperatures or air pollution levels. In a spatial setting, numerical
model outputs are displayed in the form of maps, provided as averages over grid cells, usually at high
spatial and temporal resolution. Such computer models do not associate any measure of uncertainty
with their output since they are derived from deterministic specifications. However, many sources
of uncertainty exist in constructing and employing numerical models. In fact, with computer models
providing spatially referenced output, uncertainty maps can be a useful tool to guide environmental
agencies in refining and improving computer models. Furthermore, when we use model output as
predictor for an environmental variable, wemight seek to evaluate how these uncertainties propagate
from the model output to the forecasting of the response. Altogether, it seems there is need for
quantifying uncertainty in this setting.

The motivating context for us are temperature maps that arise from the Rapid Update Cycle (RUC)
numerical weather model, a regional short term weather forecast model for the continental United
States. This model yields maps that are publicly available, provided by the National Oceanic and
Atmospheric Administration (NOAA)’s National Climatic Data Center (NCDC) but with no explicit
detail regarding their development and no associated uncertainty in their forecasts. Our contribution,
articulated in detail below, is to propose a hierarchical stochastic model along with the introduction
of a validation data set consisting of temperature measurements collected at monitoring stations
operating in the same study region. The model fuses the two data sources to enable assessment of
uncertainty associated with RUC maps.

In applications, the sources of potential uncertainty associated with numerical models include
input uncertainty, function uncertainty, model discrepancy and observational error (Cumming and
Goldstein, 2010). The Bayesian approach represents a natural way to account for all of these
uncertainty sources and several methods have been developed to deal with the uncertainty analysis
for complex computer models. Customarily, numerical models are implemented as computer codes,
dependent upon a number of inputswhich determine the nature of the output. These inputs represent
unknown parameters and the uncertainty about them propagates through the numerical model,
inducing uncertainty in the output.

A general statistical framework has been presented by Raftery et al. (1995) for mapping from
a set of input parameters to a set of model outputs, the so-called Bayesian synthesis, eventually
led to the Bayesian melding approach (Poole and Raftery, 2000) Also, statistical methods have been
proposed to handle sensitivity analysis which is concernedwith understanding how themodel output
is influenced by changes in the model inputs (e.g. Oakley and O’Hagan, 2004). For deterministic
numerical models, i.e. models with no random components, their predictions are subject to error
because any model is a simplification of reality. So, model output will not equal the ‘true’ value of the
process of interest and this discrepancy is well-known as model inadequacy (Kennedy and O’Hagan,
2001).

Structural uncertainty, which is introduced by scientific choices ofmodel design and development,
can be also quantified by analyzing multi-model ensembles. In this case, the output consists of
different versions of a numerical model, i.e. a model is run several times with different initial
conditions (scenarios). Statistical approaches for quantifying uncertainty with ensembles have
recently received considerable attention (see e.g. Gneiting et al., 2005; Raftery et al., 2005; Berrocal
et al., 2007; Smith et al., 2009; Di Narzo and Cocchi, 2010; Kleiber et al., 2011; Sloughter et al., 2013).

There is little in the literature about statistical methods for attaching uncertainty to model output
when we do not have information about how such deterministic predictions are created, i.e., we have
no information about model inputs. Our contribution to uncertainty quantification builds upon the
notion of uncertainty introduced by Ghosh et al. (2012) when numerical models are unavailable;
rather, only deterministic outputs at some spatial resolution are provided. In other words, we do not
knowhow the deterministic surfaces have beendeveloped. For us, they come froma entirely unknown
‘black box’. Ghosh et al. (2012) proposed a general Bayesian approach to associate uncertainties
with deterministic interpolated surfaces which requires some external validation data collected
independently over the same spatial domain as the deterministic map.
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