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a b s t r a c t

We develop a model-free isotropy test for spatial point patterns.
The proposed test statistic assesses the discrepancy between
the uniform distribution and the empirical normalised reduced
second-order moment measure of a sector of increasing central
angle. The null distribution of the test statistic is approximated by
the empirical distribution obtained from bootstrap-type samples,
which are generated by a stochastic procedure reconstructing
independent isotropic patterns that resemble the spatial structure
of the given point pattern, without specifying any underlying
model. Simulation studies show that, when compared with the
asymptotic χ2-test by Guan et al. (2006), the powers of the
proposed test are more robust to different choices of user-chosen
parameter.When applied to patterns of amacrine cells and Spanish
towns, the bootstrap-type test clearly suggests rejection for the
former and not rejection for the latter, while the asymptotic χ2-
test is not conclusive in either case.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

An often made assumption in spatial point pattern analysis is that an observed pattern is a realisa-
tion of a motion-invariant spatial point process. A spatial process is motion-invariant if it is stationary
and isotropic. The distribution of a stationary process is invariant under translations while that of
an isotropic process is invariant under rotations. A stationary process is not necessarily isotropic and
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a non-stationary process can be isotropic with respect to rotations about a fixed location (e.g. Byth,
1981).

Typically, stationarity and isotropy are either justified by non-statistical arguments or checked by
assessing the goodness of fit of certain classes of models. However, non-statistical justification is not
always unarguable and goodness-of-fit tests are often not powerful in detecting lack of fit caused by
non-stationarity or anisotropy. Moreover, any lack of fit of a stationary isotropic model cannot be
regarded as evidence against stationarity or isotropy. Thus, in many applications model-free tests for
stationarity and isotropy would be valuable.

For stationarity, Guan (2008) and Chiu and Liu (2013) developed model-free asymptotic tests,
based on the discrepancies between observed and expected numbers of points in expanding
rectangular regions within a rectangular sampling window. When applying the tests to the longleaf
pine data of Platt et al. (1988), which showed no strong evidence of lack of fit if the pattern ismodelled
by some stationary cluster processes (Stoyan and Stoyan, 1996; Ghorbani, 2013), Chiu and Liu (2013)
obtained small p-values that led to a clear rejection of stationarity. Zhang and Zhou (2014) introduced
another stationarity test that can be applied to non-rectangular sampling windows.

For isotropy, Guan et al. (2006) introduced a model-free statistic comparing the sample second-
order product density at user-chosen lag vectors in some prescribed directions. Using the asymptotic
normality of the density estimator, they showed that the limiting null distribution of their statistic is
χ2 with r degrees of freedom, where r + 1 is the number of a priori chosen directions for comparison.
However, in real applications of their test, there are several practical issues. First, their simulation
results reveal that the power of the test is quite sensitive to the bandwidth for the kernel estimator
of the second-order product density and to the magnitudes of the lag vectors, even if these values
are chosen within their recommended ranges. Second, if one wants to compare more directions, the
price to pay is a larger value for the degrees of freedom, which may lead to lower powers. Third,
their statistic involves the inverse of an empirical covariance matrix, which may be ill-conditioned.
Nevertheless, they offered some helpful suggestions from their experience on these issues.

Fig. 1(a) shows the point pattern formed by the locations of 69 Spanish towns in a square sampling
window; see Comas et al. (2011), Delicado et al. (2010), Illian et al. (2008), Ripley (1977, 1988), and
Stoyan et al. (1995). The pattern in Fig. 1(b) is a bivariate pattern of 152 and 142 points, respectively,
of two different types of displaced amacrine cells in the retina of a rabbit; the ‘‘on’’ and ‘‘off’’ cells
represent the types that transmit information when a light is ‘‘on’’ and ‘‘off’’, respectively; see Diggle
(2013) and Illian et al. (2008). In the literature these two patterns are modelled and analysed as
realisations of motion-invariant processes. For the stationarity hypothesis, applying the tests in Guan
(2008) and Chiu and Liu (2013) to each pattern does not suggest rejection. For isotropy, however,
visual inspection of the empirical densities ϑ̂(t) of the nearest-neighbour orientation distribution
(Illian et al., 2008, Section 4.5.2) in Fig. 2 clearly suggests a bimodal distribution for the patterns of
the ‘‘on’’ and ‘‘off’’ amacrine cells. Whenwe ignore the ‘‘on’’ or ‘‘off’’ marks and consider the pattern of
all 294 unmarked cells, the empirical density, which is flattened a bit but whose standard error should
also be reduced because of a larger sample size, still reveals a bimodal shape. For the pattern of Spanish
towns, because there are only 69 points, it seems reasonable to say that the empirical density deviates
not much from the uniform density.

However, whenwe applied the isotropy test by Guan et al. (2006) to these patternswith parameter
values chosen within the recommended ranges, the results are inconclusive because the p-values,
depending on the magnitude of the lag vectors and the bandwidth, range from 0.0000 to 1.0000 for
the Spanish towns, from 0.0322 to 0.7216 for the unmarked amacrine cells, from 0.0029 to 0.9544
for the ‘‘on’’ amacrine cells, and from 0.0054 to 0.9197 for the ‘‘off’’ amacrine cells. Such a wide range
of p-values of a given pattern shows that in practice, we need an alternative test that requires fewer
user-chosen parameters and is less sensitive to the choice of the values for these parameters. As we
can see in Section 5, our approach described below (which is not based on ϑ̂(t)), when applied to
these two data sets, is able to offer robust and strong evidence to reject the isotropy hypothesis for
the amacrine cells and to give consistently large p-values for the Spanish towns.

The idea of the test statistic proposed in this paper comes from the orientation analysis introduced
in Ohser and Stoyan (1981), who considered the normalised reduced second-order moment measure,
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