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a b s t r a c t

Non-adaptive geostatistical designs (NAGDs) offer standard ways
of collecting and analysing geostatistical data in which sampling
locations are fixed in advance of any data collection. In contrast,
adaptive geostatistical designs (AGDs) allow collection of geosta-
tistical data over time to depend on information obtained frompre-
vious information to optimise data collection towards the analysis
objective. AGDs are becoming more important in spatial mapping,
particularly in poor resource settings where uniformly precise
mapping may be unrealistically costly and the priority is often
to identify critical areas where interventions can have the most
health impact. Two constructions are: singleton and batch adaptive
sampling. In singleton sampling, locations xi are chosen sequen-
tially and at each stage, xk+1 depends on data obtained at locations
x1, . . . , xk. In batch sampling, locations are chosen in batches of size
b > 1, allowing each new batch, {x(k+1), . . . , x(k+b)}, to depend
on data obtained at locations x1, . . . , xkb. In most settings, batch
sampling is more realistic than singleton sampling. We propose
specific batch AGDs and assess their efficiency relative to their sin-
gleton adaptive and non-adaptive counterparts using simulations.
We then show how we are applying these findings to inform an
AGD of a rollingMalaria Indicator Survey, part of a large-scale, five-
year malaria transmission reduction project in Malawi.
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1. Introduction

Geostatistics has its origins in the South African mining industry (Krige, 1951), and was subse-
quently developed byGeorgesMatheron and colleagues into a self-containedmethodology for solving
prediction problems arising principally in mineral exploration; Chilès and Delfiner (2012) is a recent
book-length account. Within the general statistics research community, the term geostatistics more
generally refers to the branch of spatial statistics that is concerned with investigating an unobserved
spatial phenomenon S = {S(x) : x ∈ D ⊂ R2

}, where D is a geographical region of interest, using
data in the form of measurements yi at locations xi ∈ D. Typically, each yi can be regarded as a noisy
version of S(xi). We write X = {x1, . . . , xn} and call X the sampling design.

Geostatistical analysis can address either or both of two broad objectives: estimation of the
parameters that define a stochastic model for the unobserved process S and the observed data
{(yi, xi) : i = 1, . . . , n}; prediction of the unobserved realisation of S(x) throughout D, or particular
characteristics of this realisation, for example its average value.

A key consideration for geostatistical design is that sampling designs that are efficient for
parameter estimation are generally inefficient for prediction, and vice versa—see for example, Diggle
and Ribeiro (2007); Müller (2007). Since parameter values are usually unknown in practice, design
for prediction therefore involves a compromise. Furthermore, the diversity of potential predictive
targets requires design strategies to be context-specific. Another important distinction is between
non-adaptive sampling designs thatmust be completely specified prior to data-collection, and adaptive
designs, for which data are collected over a period of time and later sampling locations can depend on
data collected from earlier locations.

In this paper we formulate, and evaluate through simulation studies, a class of adaptive design
strategies that address two compromises: between efficient parameter estimation and efficient
prediction; and between theoretical advantages and practical constraints. The motivation for our
work is the mapping of spatial variation in malaria prevalence in rural communities through a
series of ‘‘rolling malaria indicator surveys’’, henceforth rMIS (Roca-Feltrer et al., 2012). rMIS is a
malaria transmission monitoring and evaluation tool conducted on a monthly basis. Adaptive design
is especially relevant here because resource constraints make it difficult to achieve uniformly precise
predictions throughout the region of interest, hence as data accrue over the study-regionD it becomes
appropriate to focus progressively on sub-regions of D where precise prediction is needed to inform
public health action, for example to prioritise sub-regions for early intervention.

In Section 2 we review the existing literature on adaptive geostatistical design and set out the
methodological framework within which we will specify and evaluate adaptive design strategies.
Section 3 describes our proposed class of adaptive designs for efficient prediction. Section 4 gives the
results of a simulation study in which we compare the predictive efficiency of our proposed design
strategy with simpler, non-adaptive strategies. Section 5 is an application to the design of an ongoing
prevalence mapping exercise around the perimeter of the Majete wildlife reserve, Chikwawa District,
Southern Malawi through an rMIS that will be conducted monthly over a two-year period. Section 6
is a concluding discussion.

2. Methodological framework

2.1. Geostatistical models for prevalence data

The standard geostatistical model for prevalence data can be formulated in a hierarchical form as
follows (Diggle et al., 1998). For i = 1, . . . , n, let Yi be the number of positive outcomes out of ni
individuals tested at location xi in a region of interest D ⊂ R2, and d(xi) ∈ Rp a vector of associated
covariates. The model assumes that Yi ∼ Binomial(ni, p(xi)) where p(x) is the prevalence of disease
at a location x. The model further assumes that

log[p(x)/{1 − p(x)}] = d(x)′β + S(x) (1)

where S(x) is a stationary Gaussian process with zero mean, variance σ 2 and correlation function
ρ(u) = Corr{(S(x), S(x′))}, where u is the distance between x and x′.
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