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a b s t r a c t

We investigate the problem of classifying superpositions of spatial
point processes. In particular, we are interested in realizations
formed as a superposition of a regular point process and a Poisson
point process. The aim is to decide which of the two processes
each point belongs to. Recently, a Markov chain Monte Carlo
(MCMC) approachwas suggested by Redenbach et al. (2015),which
however, is computationally heavy. In this paper, wewill introduce
a method based on variational Bayes approximation and compare
its performance to the performance of a slightly refined version of
the MCMC approach.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Classification of points in a superposition of spatial point processes is very difficult but of great
practical interest. Most of the studies in the literature consider the situation where the data are
generated by two Poisson processes with different intensities and where minefield detection is
in focus. The area of interest is typically divided into two parts, one with low intensity in which
only noise is present and the other with a higher intensity containing both mines and noise
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(see Allard and Fraley, 1997; Byers andRaftery, 1998;Dasgupta andRaftery, 1998; Cressie and Lawson,
2000; Stanford and Raftery, 2000). After detecting the boundaries of the minefield, the points in this
area can be classified to be either mines or noise. Typically, this classification is based on Bayesian
approaches which allow to estimate the posterior probability for each point to be a mine.

There are also some studieswhere a regular process is superimposedwith Poissonnoise.Walsh and
Raftery (2002) considermines located in parallel linesmixedwith Poissonnoise. A test basedonpartial
Bayes factors to test the Poisson hypothesis against Strauss superimposed with Poisson is presented
by the same authors, see Walsh and Raftery (2005). Furthermore, having a glaciological problem in
mind Redenbach et al. (2015) introduce an MCMC approach to classify the points in a superposition
of a Strauss and a Poisson process using some of the ideas by Walsh and Raftery (2002). This method
seems to classify the points quite well in the sense that Ripley’s K function for the classified Strauss
process does not show any significant deviation from that of the original process. In practice, the
parameters of the superpositionmodel need to be estimated simultaneously with the classification of
the points. Even though the quality of the parameter estimates is not that good, the classification still
seems to work.

In this paper, wewill introduce an alternative approach based on variational Bayes approximation.
We will restrict ourselves to superpositions of two stationary and isotropic point processes, where
one of the processes is a pairwise interaction process and the other one is a Poisson process. We will
compare the performance of the new variational Bayes classification approach to the performance
of the MCMC approach. We will also recall a classification method based on distances to the
nearest neighbours, see Byers and Raftery (1998). This method was introduced for a superposition
of two Poisson processes but according to the authors, it works even when one of the processes is
regular.

The paper is organized as follows. First, we recall the two methods that can be found in the
literature, namely the method based on the nearest neighbour distances and the MCMC approach.
Then, we will introduce the new approach based on variational Bayes approximation. Furthermore,
we perform a simulation study in 2D to compare the new method to the existing ones in the case
where the regular process is a Strauss process.

2. Model specification

We assume that we observe a point pattern x consisting of n points contained in a study region
A ⊂ Rd. The point pattern x is interpreted as a superposition of two point patterns x0 and x1 consisting
ofn0 andn1 points, respectively, andn = n0+n1.We restrict ourselves to the casewhere the pattern x0
is a realization of a Poisson process Ξ0 and x1 a realization of a regular process, here a Strauss process
Ξ1. Note, however, that the Strauss process could be replaced by any pairwise interaction Gibbs point
process. Furthermore, if other than regular processes were of interest, a more general class of models
could be considered. The two processes are assumed to be stationary, isotropic, and independent of
each other. In applications we often assume that Ξ1 models the locations of interest while Ξ0 gives
locations of some noise points.

The distributions of both Ξ0 and Ξ1 are determined by densities with respect to the distribution
of a Poisson process with unit intensity. The Poisson process Ξ0 has the density

f0(x0) = e−(λ0−1)|A|λ
n0
0 ,

where λ0 > 0 is the intensity and |A| is the volume of the study region A. The density for the Strauss
process Ξ1 (conditionally on A) is

f1(x1) = αβn1γ sr (x1),

where sr(x1) is the number of pairs of points in x1 with distance less than or equal to r , and α is the
normalizing constant (see Møller and Waagepetersen, 2004). This density depends on three param-
eters: β > 0 is a parameter governing the intensity, 0 ≤ γ ≤ 1 is the strength of interaction, and
r > 0 is the range of interaction. It is well-known that it is difficult to estimate γ and r simulta-
neously. Hence, we assume r to be known, such that the parameters of the full model x = x0 ∪ x1
are θ = (λ0, β, γ ). The intensity λ1 of the Strauss process depends on the parameters β , r and γ
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