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a b s t r a c t

Stationary Random Functions have been successfully applied in
geostatistical applications for decades. In some instances, the
assumption of a homogeneous spatial dependence structure across
the entire domain of interest is unrealistic. A practical approach
for modeling and estimating non-stationary spatial dependence
structure is considered. This consists in transforming a non-
stationary Random Function into a stationary and isotropic one
via a bijective continuous deformation of the index space. So far,
this approach has been successfully applied in the context of data
fromseveral independent realizations of a RandomFunction. In this
work, we propose an approach for non-stationary geostatistical
modeling using space deformation in the context of a single
realization with possibly irregularly spaced data. The estimation
method is based on a non-stationary variogram kernel estimator
which serves as a dissimilarity measure between two locations in
the geographical space. The proposed procedure combines aspects
of kernel smoothing, weighted non-metric multi-dimensional
scaling and thin-plate spline radial basis functions. On a simulated
data, the method is able to retrieve the true deformation.
Performances are assessed on both synthetic and real datasets. It is
shown in particular that our approach outperforms the stationary
approach. Beyond the prediction, the proposed method can also
serve as a tool for exploratory analysis of the non-stationarity.
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1. Introduction

In the statistical analysis of spatial processes, modeling and estimating the spatial dependence
structure is fundamental. It is used by prediction techniques like kriging or conditional simulations.
Its description is commonly carried out using statistical tools such as the variogram or covariogram
calculated on the entire domain of interest and considered under the stationarity assumption, for
reasons of parsimony or mathematical convenience. The complexity of the spatial component of the
analyzed process is therefore limited.

The assumption that the spatial dependence structure is translation invariant over the whole
domain of interest may be appropriate, when the latter is small in size, when there is not enough
data to justify the use of a complex model, or simply because there is no other reasonable alternative.
Although justified and leading to a reasonable analysis, this assumption is often inappropriate
and unrealistic given certain spatial data collected in practice. Non-stationarity can occur due to
many factors, including specific landscape and topographic features of the region of interest or
other localized effects. These local influences can be observed computing local variograms, whose
characteristics may vary across the domain of observations. For this type of non-stationary structures,
making spatial predictions using conventional stationarymethods is not appropriate. Indeed, applying
stationary approaches in such cases would be liable to produce less accurate predictions, including an
incorrect assessment of the estimation error (Stein, 1999).

Several approaches have been proposed to deal with non-stationarity through second order
moments (see Guttorp and Schmidt, 2013; Sampsonet al., 2001; Guttorp and Sampson, 1994, for
a review). One of the most popular methods of introducing non-stationarity is the space deformation
of Sampson and Guttorp (1992) and other (Meiring et al., 1997; Perrin and Monestiez, 1998; Iovleff
and Perrin, 2004). It consists in startingwith a stationary Random Function, and then transforming the
distance in some smooth way to construct a non-stationary Random Function. Maximum likelihood
and Bayesian variants of this approach have been developed by Mardia and Goodall (1993), Smith
(1996), Damian et al. (2001), and Schmidt and O’Hagan (2003). Perrin and Meiring (1999), Perrin
and Senoussi (2000), Perrin and Meiring (2003), Genton and Perrin (2004) and Porcu et al. (2010)
established some theoretical properties about uniqueness and richness of this class of non-stationary
models. Some adaptations have been proposed recently by Castro Morales et al. (2013), Bornn et al.
(2012), Schmidt et al. (2011) and Vera et al. (2008, 2009). A fundamental limitation of all estimation
methodologies presented so far is the fact that implementation requires multiple independent
realizations of the Random Function in order to obtain an estimated sample covariance or variogram
matrix. The idea of having several independent realizations of the natural field is unrealistic because
there are notmultiple parallel physical worlds. In practice, the approach is feasible when a time series
is collected at each location as this gives the necessary, albeit dependent, replications. In general,
we would prefer to incorporate a temporal aspect in the modeling rather than attempting repairs
(e.g., differencing and detrending) to achieve approximatively independent realizations. However,
many geostatistical applications involved only one measurement at each site or equivalently, only
one realization of a Random Function. Anderes and Stein (2008) and Anderes and Chatterjee (2009)
are the first authors to address the estimation of space deformation model in the case of a single
realization of a Random Function, obtained as the transformation of a Gaussian and isotropic
stationary Random Function. They exhibit a methodology based on quasi-conformal mappings and
approximate likelihood estimation of the local parameters that characterize the deformation derived
from partitioning densely observed data into subregions and assuming independence of the Random
Function across partitions. However, this approach has not been applied to real datasets and requires
very dense data.

In this work, we follow the pioneering work of Sampson and Guttorp (1992), while freeing the
strong assumption of replication and do notmake any distributional assumptions. In addition, we take
into account other shortcomings associated with this approach that are: the required property of the
deformation to be bijective and the computational challenge to fit the model for moderate and large
datasets. To do so, we propose an estimation procedure based on the inclusion of spatial constraints
and the use of a set of representative points referred to as anchor points rather than all data points to
find the deformation. The proposedmethod provides a non-parametric estimation of the deformation
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