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a b s t r a c t

Big spatial datasets are very common in scientific problems, such
as those involving remote sensing of the earth by satellites,
climate-model output, small-area samples from national surveys,
and so forth. In this article, our interest lies primarily in very
large, non-Gaussian datasets. We consider a hierarchical statistical
model consisting of a conditional exponential-family model for
the data and an underlying (hidden) geostatistical process for
some transformation of the (conditional) mean of the data model.
Within this hierarchical model, dimension reduction is achieved
by modeling the geostatistical process as a linear combination of a
fixed number of spatial basis functions, which results in substantial
computational speed-ups. These models do not rely on specifying
a spatial-weights matrix, and no assumptions of homogeneity,
stationarity, or isotropy are made. Our approach to inference
using these models is empirical-Bayesian in nature. We develop
maximum likelihood (ML) estimates of the unknown parameters
using Laplace approximations in an expectation–maximization
(EM) algorithm. We illustrate the performance of the resulting
empirical hierarchical model using a simulation study. We also
apply our methodology to analyze a remote sensing dataset of
aerosol optical depth.
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1. Introduction

Big spatial datasets are very common in scientific problems, such as those involving remote sensing
of the earth by satellites, climate-model output, small-area samples from national surveys, and so
forth. In this article, our interest lies primarily in datasets that are very large and non-Gaussian in
form. We consider a hierarchical statistical model consisting of two levels. At the first level, we have
an exponential-family model for the data given a spatial process and parameters (which we call the
data model). At the second level, we assume a geostatistical process given parameters (which we call
the process model), for some transformation of the mean of the data model.

The exponential family of distributions include commonly used continuous and discrete
distributions; for a detailed review, see McCullagh and Nelder (1989, Section 2.2.2). All members of
the exponential family have a density or probability mass function that can be written as:

p(z|γ ) = exp{(zγ − b(γ )) /τ 2
− c(z, τ )}, (1)

where γ is called the canonical parameter or the natural parameter, b(γ ) is a function that depends
only on γ , c(z, τ ) is a function independent of γ , and τ is a scaling constant. The representation above
is called the canonical form, or the natural form, of the exponential family.

Here, and in what follows, we use the notation [A|B] to denote the conditional probability distribu-
tion of A given B. Suppose we have data, Z1, . . . , Zn, coming from a member of the exponential family
such that {[Zi|γ1, . . . , γn] : i = 1, . . . , n} are mutually independent, and [Zi|γ1, . . . , γn] ≡ [Zi|γi],
where [Zi|γi] has density given by (1). Then one may proceed by modeling a transformation of the
expectation of [Zi|γi], namely E(Zi|γi) = b′(γi), as

g(E(Zi|γi)) = X⊤

i β, (2)

where g(·) is the link function, Xi denotes a p-dimensional vector of known covariates, and β is a
p-dimensional vector of regression coefficients. There are a lot of possible choices for g(·). The
maximum likelihood (ML) estimator of β can be obtained via iteratively reweighted least squares.
For a detailed review of the literature on GLMs, see McCullagh and Nelder (1989) or McCulloch et al.
(2001).

When Z1, . . . , Zn are associated with locations in space, the assumption of independence is
doubtful. Away to extend the framework above, that takes into account spatial variability, is to replace
γ in (1) with a spatial process, {Y (s) : s ∈ D}, whereD is the spatial domain of interest. The covariance
between Y (s) and Y (u), for s,u ∈ D, is defined as:

CY (s,u) ≡ cov(Y (s), Y (u)).

Now consider spatial data Z(s1), . . . , Z(sn) from a GLM such that {[Z(si)|Y (·)] : i = 1, . . . , n} are
mutually independent, and

g(E(Z(si)|Y (·))) = Y (si); i = 1, . . . , n, (3)

where g(·) is the link function. The hierarchical modeling framework defined above yields a spatial
version of the GLM framework; it was proposed by Diggle et al. (1998), who assumed a Gaussian
model for Y (·) and a prior distribution on its parameters. See also Omre and Tjelmeland (1997) for an
exposition of the same framework for solving complex problems in petroleum geostatistics.

Lindley and Smith (1972) introduced a Bayesian-linear-model framework, where conditional and
prior distributions come fromamultivariate Gaussian distribution. In the spatial context, Omre (1987)
defined Bayesian kriging for the linear model; for further extensions see Cressie (1993, Sec. 3.4.4).
Besag et al. (1991) showed how a spatial model for counts in small areas could be decomposed hierar-
chically, where the hidden process Y (·)was used tomodel the spatial dependence. They assumed that
the counts were (conditionally) Poisson distributed, and that the log means were a Gaussian spatial
process, specifically a Gaussian Markov Random Field (MRF) known as the conditional autoregressive
(CAR) model. However, a simultaneous autoregressive (SAR) model, or a geostatistical model could
also be used. Indeed Diggle et al. (1998) employed spatial generalized linear mixed models (GLMMs)
for spatially dependent non-Gaussian variables observedpotentially anywhere inD, and they assumed
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