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a b s t r a c t

Spatial extreme value analysis is useful to environmental studies,
in which extreme value phenomena are of interest andmeaningful
spatial patterns can be discerned. Max-stable process models are
able to describe such phenomena. This class of models is asymp-
totically justified to characterize the spatial dependence among
extremes. However, likelihood inference is challenging for such
models because their corresponding joint likelihood is unavail-
able and only bivariate or trivariate distributions are known. In
this paper, we propose a tapered composite likelihood approach
by utilizing lower dimensional marginal likelihoods for inference
on parameters of various max-stable process models. We consider
a weighting strategy based on a ‘‘taper range’’ to exclude distant
pairs or triples. The ‘‘optimal taper range’’ is selected to maximize
various measures of the Godambe information associated with the
tapered composite likelihood function. This method substantially
reduces the computational cost and improves the efficiency over
equallyweighted composite likelihood estimators.We illustrate its
utility with simulation experiments and an analysis of rainfall data
in Switzerland.

Published by Elsevier B.V.

1. Introduction

Statistical modeling of extreme values has recently drawn research attention. Many environmen-
tal problems involve extreme values observed over space, such as extreme precipitation, heavy snow,
windstorms and high tides, to name a few. The primary interest in analyzing such data is to charac-
terize recognizable and meaningful spatial patterns that are useful to understanding, predicting, and
managing the risks of extreme environmental phenomena.
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Recent developments of statistical models for spatial extreme values are mainly based on latent
variables, on copulas and on spatial max-stable processes; see the review paper by Davison et al.
(2012) and references therein. Among these models, max-stable stochastic processes have emerged
as a fundamental class of models that are able to describe spatial extreme value phenomena. This
is because they arise as the natural generalization of the univariate generalized extreme value (GEV)
distribution in infinite dimensional continuous spaces, providing an asymptotically justified approach
tomodeling process extremes.Max-stable processmodels for spatial datawere first constructed using
the spectral representation of de Haan (1984). There have been several subsequent works on the
construction of spatial max-stable process models (see, e.g., Smith, 1990; Schlather, 2002; Kabluchko
et al., 2009; Smith and Stephenson, 2009; Davison and Gholamrezaee, 2012) and on their application
(see, e.g., Coles, 1993; Buishand et al., 2008; Padoan et al., 2010).

Despite many attractive properties of max-stable process models, both classical and Bayesian in-
ferences encounter difficulties because closed-formexpressions of the corresponding joint likelihoods
are typically not available except for some trivial cases. Taking advantage of the availability of low-
dimensionalmarginal likelihoods, the composite likelihoodmethod has been introduced for inference
on the parameters of max-stable processes. Padoan et al. (2010) were the first to suggest maximum
pairwise likelihood estimation for a particular class of max-stable process models, namely Gaussian
extreme value processes (Smith, 1990). Genton et al. (2011) studied maximum composite likelihood
estimators for the same model based on both pairs and triples. They demonstrated substantial gain
in efficiency from p = 2 to p = 3 sites in R2 by means of a Monte Carlo simulation study. Pairwise
and triplewise composite likelihoods have also been used for inference on other max-stable process
models (see, e.g., Blanchet and Davison, 2011; Davison et al., 2012; Huser and Davison, 2013).

Several investigations have considered the choice of weights of the composite likelihoods of time
series and spatial data to improve statistical efficiency or to reduce the computational burden associ-
atedwith large datasets. In the context of Gaussian processmodels, Bevilacqua et al. (2012) suggested
that down-weighting or excluding likelihood contributions from sites that are very far apart leads to
efficiency gains over the full composite likelihood. In the context of time series, several works (see,
e.g., Joe and Lee, 2009; Davis and Yau, 2011) have shown that including unnecessary pairs can cause
some loss of estimation efficiency. Padoan et al. (2010) found in a simulation study that the composite
likelihoods constructed only using neighboring sites can reduce the asymptotic variances of themodel
parameters from a Gaussian extreme value process referred to as the Smithmodel (Smith, 1990).

In this paper, we extend the results in Padoan et al. (2010) to investigate in detail the utility
of a tapered composite likelihood approach to make inference on several formulations of max-
stable process models, including the Smith model, the Schlather model (Schlather, 2002) and the
Brown–Resnick model (Kabluchko et al., 2009). Two flexible and practical tapering strategies are
proposed to improve the efficiency of the composite likelihood estimators. One is based on the trace
of the estimated covariance matrix associated with parameter estimates, and the other is based on
its determinant. The proposed tapering strategy is also useful to reducing the computational cost
caused by the combinatorial explosion associated with the use of composite likelihood with large
datasets. In particular, we extend our investigation beyond the tapered pairwise composite likelihood
for the settings of isotropic max-stable processes to the context of anisotropic max-stable processes
and triplewise composite likelihoods. Moreover, we discuss the connection between the choice of
weights and the strength of the extremal dependence.

The paper is organized as follows. Section 2 reviews the theory of max-stable processes. The
tapered composite likelihood approach is developed in Section 3, while Section 4 illustrates the
performance of ourmethod through a number of simulation studies.We concludewith an illustration
of spatial extreme value analysis of precipitation data in Switzerland.

2. Max-stable processes

2.1. Spatial max-stable processes

Let {Z̃(s)(i)}, s ∈ S ⊂ Rd, i = 1, . . . , n, be n independent replicates of a continuous spatial
stochastic process, where S is an index set. A spatial stochastic process, Z(s), is max-stable if there
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