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a b s t r a c t

This work revisits a simple geostatistical model for the analysis
of spatial count data and describes some of its main second-order
properties. This geostatistical model is simpler than an alternative
hierarchical model, also used for the analysis of spatial count data,
so it may be more appealing to practitioners and spatial data
analysts. Geostatistical methods for trend parameter estimation,
semivariogram estimation and prediction of the latent process are
reviewed, and new estimators and predictors are proposed. Finally,
a designed simulation experiment is carried out to investigate and
compare the sampling properties of the different estimators and
predictors.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Spatial count data are routinely collected in many earth and social sciences, such as ecology,
epidemiology, demography and geography. For instance, death counts due to different causes are
collected on a regular basis by government agencies throughout the entireU.S. and classified according
to different demographic variables, such as age, gender and race. Among the most common goals
for the analysis of this kind of data are determining the effects on mortality of spatially varying risk
factors (regression problems) and estimation of unobserved spatially varying quantities of interest
(prediction problems). In this work I consider a model for geostatistical count data.

Early attempts to model geostatistical count data include Gotway and Stroup (1997) and McShane
et al. (1997) who proposed the use of, respectively, generalized linear models and generalized
estimating equations. But the statistical basis of these approaches to model geostatistical count data
is somewhat questionable. In addition, prediction methodology in these works is either lacking or
ad-hoc, with no measures of prediction uncertainty. As an alternative, many models of current use
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for geostatistical count data use Gaussian random fields as building blocks. The prime example is
the hierarchical model proposed by Diggle et al. (1998), which can be viewed as a generalized linear
mixed model; see Christensen and Waagepetersen (2002), Royle and Wikle (2005), and Guillot et al.
(2009) for applications of this model, and De Oliveira (2013) for a study of its properties. Although
currently this model seems to be (arguably) the ‘state-of-the-art’ for modeling geostatistical count
data, fitting this kind of hierarchical model is a challenging task requiring computationally intensive
numerical methods, such as the EM orMCMC algorithms. This complexity is likely to preclude the use
of this model by most practitioners and spatial data analysts, so it is desirable to also have alternative
simpler models that can be fitted using traditional geostatistical methods. This work studies one such
model.

In this work I consider a model for geostatistical count data proposed by Monestiez et al.
(2006). A similar model was previously proposed by Zeger (1988) for the analysis of time series
of count data and later adapted by McShane et al. (1997) for the analysis of spatial count data.
The main goal in these works was to perform regression analysis, i.e., to assess the effect of
covariates on the mean response. Monestiez et al. (2006) proposed a geostatistical approach
for inference about a latent (unobserved) process that ‘drives’ the observed count data, for the
case when this latent process has constant mean function and the data collection may involve
unequal sampling efforts. Later, Bellier et al. (2010) extended the methodology for the case when
the latent process has a non-constant mean function, but the sampling efforts are all equal.
These works adapted traditional geostatistical methods for semivariogram estimation and optimal
linear unbiased prediction (kriging) to deal with the more challenging context of count data:
the latent process of interest is not observed and the observed data are non-stationary due to
heteroscedasticity. The methodology has been applied and extended, among others, by Goovaerts
(2005, 2006) and Krivoruchko et al. (2011a,b), where the latter used the software ArcGIS Geostatistical
Analyst.

Although several applications of the aforementioned model have appeared in the literature,
the study of the model properties as well as properties of the parameter estimators and latent
process predictors have, to the best of my knowledge, not been carried out. In this work I revisit
the aforementioned model and undertake a detailed study of its properties and properties of the
statistical methods used to make inference about the model. First, the assumptions under which
the model is constructed are made explicit and some of its main second-order properties are
derived. Second, methods for estimation of the model components (trend and semivariogram) are
described in some detail. I propose estimating the trend parameters using one of two variants
of maximum pseudo likelihood. Also, the semivariogram estimator proposed by Monestiez et al.
(2006) is reviewed, and two other estimators are proposed. Third, the method proposed by
Monestiez et al. (2006) to predict the latent process is reviewed, and an alternative predictor is
proposed that parallels simple kriging. Finally, the main sampling properties of the different trend
parameter estimators, semivariogram estimators and latent process predictors are investigated using
a designed simulation experiment. The findings of this investigation are summarized in the last
section.

2. A model for geostatistical count data

Let {Λ(s) : s ∈ D}, with D ⊂ R2, be a positive random field describing the spatial variation of a
quantity of interest over the domain D, usually a spatially varying intensity or risk, whose values are
not observable. To learn about this random field spatial information is collected on random variables
Y1, . . . , Yn that take non-negative integer values and whose mean values are related to Λ(·). Three
examples illustrate this situation. In the Rongelap Island dataset analyzed by Diggle et al. (1998),
Λ(s) represents the level of the radionuclide Cesium (137Cs) at location s and Yi is the number of
photon emissions collected at the sampling location si during a period of time ti by a gamma-ray
counter. In the Bjertorp Farm dataset analyzed by Guillot et al. (2009), Λ(s) represents the weed
intensity at location s and Yi is the number of weeds observed within a rectangular frame centered
at the sampling location si and having area ti. Finally, in the New England cancer mortality dataset
analyzed by Goovaerts (2005), Λ(s) represents the risk of breast cancer for white females at location
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