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a b s t r a c t

In regression settingswhere covariates and responses are observed
across space and time, a common goal is to quantify the effect
of change in the covariates on the response while adequately ac-
counting for the joint spatio-temporal structure in both. Custom-
ary modeling describes the relationship between a covariate and
a response variable at a single spatio-temporal location. However,
often it is anticipated that the relationship between the response
and predictors may extend across space and time. In other words,
the response at a given location and time may be affected by levels
of predictors in spatio-temporal proximity. Here, a flexible mod-
eling framework is proposed to capture such spatial and tempo-
ral lagged effects between a predictor and a response. Specifically,
kernel functions are used to weight a spatio-temporal covariate
surface in a regression model for the response. The kernels are
assumed to be parametric and non-stationary with the data in-
forming the parameter values of the kernel. The methodology is
illustrated on simulated data as well as a physical data set of ozone
concentrations to be explained by temperature.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Consider quantifying the effect of a covariate on a response where both the covariate and response
are point and time-referenced over a spatio-temporal domain. More concretely, let Y (s, t) denote
a response variable at location s and time t and X(s, t) denote a spatio-temporal covariate that
is, potentially, associated with the response (unless explicitly stated, Y (s, t) and X(s, t) will be
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univariate). To simplify matters, throughout this article assume (s, t) ∈ Rd
× R for some d ∈ N

but note that if (s, t) ∈ D × T for bounded domains D ⊂ Rd and T ⊂ R then the methods below
still apply with minimal alteration (see Section 2 for more details). Methods for capturing the spatio-
temporal correlations within Y (s, t) and X(s, t) are now common with reviews provided by Stein
(2005) and Gneiting et al. (2007). When relating X(s, t) to Y (s, t), the common method is to do so
linearly through the mean according to

ℓ(E(Y (s, t) | X(s, t), β0, β1)) = β0 + β1X(s, t), (1)

where ℓ(·) is an appropriate link function (e.g. identity, log, etc.). Common extensions of (1) include
spatially varying coefficient models (Gelfand et al., 2003) and dynamic spatial process models (Stroud
et al., 2001; Huerta et al., 2004; Gelfand et al., 2005). However, a fundamental assumption of (1) is that
only X(s, t) affects E(Y (s, t)); neighboring covariate levels X(s′, t ′) for (s′, t ′) close to (s, t) do not. In
essence, by Eq. (1) the relationship between Y and X is confined to a single spatial location and time
period. However, if Y (s, t) and/or X(s, t) exhibit spatio-temporal correlation then the relationship
between them may be more complex. Here, we offer flexible spatio-temporal models to enable this,
with a summary of our contribution provided below.

Ground-level ozone is the primary constituent of smog and has been linked to various
negative health outcomes associated with the lungs such as chest pain, asthma, and bronchitis
(www.epa.gov/ozone). For these reasons, the Environmental Protection Agency (EPA) monitors the
levels of ozone near urban areas of the United States. Ozone formation is the result of a chemical
reaction between volatile organic compounds (VOC) and nitric oxide (NOx) in the presence of sunlight
(i.e., solar radiation). In the absence of solar radiation data, temperature is often used as a surrogate
predictor of the concentration of ozone (Abdul-Wahab et al., 2005; Reich et al., 2011). Specifying a
suitable statisticalmodel for the implicit relationship between ozone concentrations and temperature
may require more than simply regressing ozone concentrations on temperature at a given location
and time period. For example, if temperatures have been high for several days, ozone concentration
may also be higher because such conditions, potentially, allow a greater number of reactions between
VOC and NOx to take place. Similarly, in the presence of wind, temperatures at one location in
recent days may affect ozone concentrations at a different location on the current day. Finally, as
temperature is serving as a surrogate for solar radiation, the relationship between temperature
and ozone concentration may be more spatially and temporally complex than had solar radiation
been used directly. Each of these possibilities suggests that the effect of temperature on ozone
concentration may be spatially and/or temporally lagged.

Other examples where spatio-temporal lagged effects occur include the effect of pollution on
public health (Schwartz, 2000; Welty and Zeger, 2005; Welty et al., 2009), economic indicators on
consumption (Ravines et al., 2006), and disease incidence on disease propagation (Knorr-Held and
Richardson, 2003). In all of these examples, the relationship between the response and covariate is
not confined to a single spatio-temporal location and lagged effects need to be incorporated into the
statistical model.

Models with temporally lagged effects are not new with the most common being the distributed
lag model of Almon (1965) and its variations (see Ravines et al., 2006, and the references therein).
Distributed lag models in time extend (1) to

ℓ(E(Y (s, t) | X(s, t), . . . , X(s, t − L), β0, α0, . . . , αL)) = β0 +

L
l=0

αlX(s, t − l), (2)

for some known maximum lag L. Alternatively, L could be infinite yielding the Koyck distributed
lag model (Koyck, 1954; Frances and van Oest, 2004). Distributed lag models, however, suffer from
several limitations. First, if X(s, t) exhibits strong temporal correlation then the set of covariates
{X(s, t − l) : l = 0, . . . , L} are highly collinear resulting in unstable estimates of the coefficients
αl, l = 1, . . . , L. To stabilize the estimates, various constraints are imposed on {αl}. For example, {αl}

may be assumed to follow some function such as a polynomial (Schwartz, 2000) or spline (Zanobetti
et al., 2000).Welty et al. (2009) build constraints into a prior distribution and estimate the coefficients
from a Bayesian perspective. Second, (2) only accounts for temporal lags while ignoring spatially
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