
Author's Accepted Manuscript

The room temperature tensile deformation behavior of thermomechanically processed β -metastable Ti-Nb-Ta-Zr bio-alloy: the role of deformation-induced martensite

A. Maghsoudlou, A. Zarei-Hanzaki, H.R. Abedi, A. Barabi, F. Pilehva, D. Dietrich, T. Lampke

www.elsevier.com/locate/msea

PII: S0921-5093(18)31234-6

DOI: https://doi.org/10.1016/j.msea.2018.09.038

Reference: MSA36919

To appear in: Materials Science & Engineering A

Received date: 10 July 2018

Revised date: 11 September 2018 Accepted date: 12 September 2018

Cite this article as: A. Maghsoudlou, A. Zarei-Hanzaki, H.R. Abedi, A. Barabi, F. Pilehva, D. Dietrich and T. Lampke, The room temperature tensile deformation behavior of thermomechanically processed β-metastable Ti-Nb-Ta-Zr bio-alloy: the role of deformation-induced martensite, *Materials Science & Engineering A*, https://doi.org/10.1016/j.msea.2018.09.038

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

The room temperature tensile deformation behavior of thermomechanically processed β -metastable Ti-Nb-Ta-Zr bio-alloy: the role of deformation-induced martensite

A. Maghsoudlou ^a, A. Zarei-Hanzaki ^a, H. R. Abedi ^a, A. Barabi ^a, F. Pilehva ^a, D. Dietrich ^b, T. Lampke ^b

^a Hot Deformation & Thermomechanical Processing Laboratory of High Performance Engineering Materials, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran

^b Chemnitz University of Technology, Institute of Composite Materials and Surface Technology, D-09107 Chemnitz, Germany

*Corresponding author. Tel.: +98 2161114167; fax: +98 2188006076. E-mail address: zareih@ut.ac.ir (A. Zarei-Hanzaki).

Abstract

The present work was planned to investigate the microstructural evolution and mechanical properties of a metastable β -type titanium alloy composing of Ti–27.96Nb–11.97Ta–5.02Zr %wt (so-called TNTZ alloy), after applying a predetermined low-temperature thermomechanical processing (LTMP) cycle. The room temperature uniaxial tensile testing was utilized to evaluate the processed material flow behavior. To this end, the occurrence of any phase transformation and twinning-induced elasto-plasticity effects along with the work hardening behavior of the experimental TNTZ alloy were thoroughly studied. A double yielding phenomenon was realized in the specimens subjected to cold rolling and subsequent short time annealing. The XRD analysis confirmed an increase in volume fraction of α " martensite as a result of deformation-induced martensite transformation in the microstructure. Electron backscatter diffraction (EBSD) analysis revealed that low angle boundaries would form within grains holding near (001) texture and might well act as a preferred nucleation site to develop deformation-induced martensite. The intersections of α " martensite and the contribution of dynamic Hall-Petch effect could result in spectacular work hardening behavior in comparison to other β -type titanium alloys. The presence of sub-sized grains in the microstructure was related to the martensite reversion; this could further increase the strain hardening rate in the experimental alloy.

Keywords: β -type Ti alloy; Work hardening; Deformation-induced martensite; Twinning-induced plasticity

Download English Version:

https://daneshyari.com/en/article/10646570

Download Persian Version:

https://daneshyari.com/article/10646570

<u>Daneshyari.com</u>