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a b s t r a c t

If not properly quantified, the uncertainty inherent to transport models makes analyses based on their
output highly unreliable. This study investigated uncertainty in four-stage transport models by analysing
a Danish case-study: the Næstved model. The model describes the demand of transport in the munici-
pality of Næstved, located in the southern part of Zealand. The municipality has about 80,000 inhabitants
and covers an area of around 681 km2. The study was implemented by using Monte Carlo simulation and
scenario analysis and it focused on how model input and parameter uncertainty affect the base-year
model outputs uncertainty. More precisely, this study contributes to the existing literature on the topic
by investigating the effects on model outputs uncertainty deriving from the use of (i) different prob-
ability distributions in the sampling process, (ii) different assignment algorithms, and (iii) different levels
of network congestion. The choice of the probability distributions shows a low impact on the model
output uncertainty, quantified in terms of coefficient of variation. Instead, with respect to the choice of
different assignment algorithms, the link flow uncertainty, expressed in terms of coefficient of variation,
resulting from stochastic user equilibrium and user equilibrium is, respectively, of 0.425 and 0.468.
Finally, network congestion does not show a high effect on model output uncertainty at the network
level. However, the final uncertainty of links with higher volume/capacity ratio showed a lower dis-
persion around the base uncertainty value.

Results are also obtained from the implementation of the analysis on a real case involving the fi-
nalization of a ring road around Næstved. Three different scenarios were tested. The resulting un-
certainty in the travel time savings from the comparison of the three scenarios expressed in terms of
coefficient of variation, turned out to be between 0.133 and 0.145, thus confirming the importance of
uncertainty analysis in transport policy assessment.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The literature on urban planning and transport planning has
demonstrated that there is considerable inaccuracy between
forecasted and observed traffic flows (e.g., Bain, 2003; Bain and
Plantagie, 2004; Bain and Polakovic, 2005; Flyvbjerg, 2005;
Flyvbjerg et al., 2006; Parthasarathi and Levison, 2010; Welte and
Odeck, 2011). The list of potential sources of such inaccuracy ori-
ginates from the complexity of the systems generating traffic flows
(Van Zuylen et al., 1999). Complex systems are systems whose
components interact in a way that is difficult to understand, thus
making their output unpredictable. As a consequence, whenever a
model is created to reproduce a complex system, its output will

invariably be affected by uncertainty. Uncertainty pertains every-
thing the modeller does not know to a full extent due to limited
knowledge (e.g., statistical sampling) or stochasticity (e.g., para-
meter calibration) of some model components (Walker et al.,
2003). Any of the model components can be affected by un-
certainty: context, structure, inputs, parameters and final output.

The main consequence of such uncertainty is that the point
estimates of modelled traffic flows, and their derived measures,
only represent one of the possible outputs generated by the
models. Instead, modelled traffic flows are better expressed as a
central estimate and an overall range of uncertainty margins ar-
ticulated in terms of output values and likelihood of occurrence
(Boyce, 1999). In fact, analyses based on point estimates invariably
produce unreliable results and decisions taken relying on them
may easily lead to unexpected consequences. Thus, it is essential to
assess transport model uncertainty by producing uncertainty
measures. This can be done by investigating where the uncertainty
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originates, which are its main drivers and how it propagates
throughout the model, especially for sequential iterative analytic
frameworks such as the commonly used four-stage model.

Previous studies addressed uncertainty propagation through-
out four-stage sequential transport model frameworks, such as
Zhao and Kockelman (2002), Zhang et al. (2011) and Yang et al.
(2013). They all found a common uncertainty propagation pattern,
where uncertainty increases throughout the first three model
steps, i.e. trip generation, trip distribution and mode choice, to
finally reduce in the assignment model. Zhao and Kockelman
(2002) argued that this reduction might be due to the network
congestion effects on the trip assignment equilibrium procedure,
implying that capacity constraints might reduce the variability of
the results on the link flows. However, they also pointed out that
the reduction of uncertainty in the assignment step might also be
the consequence of the accumulation on the same links of in-
dependent trips related to different origin–destination pairs. In
their analysis of the Dutch national model, De Jong et al. (2007)
found that congestion reduced final model output uncertainty but
only to a minor degree. Zhang et al. (2011) investigated model
output uncertainty for different levels of congestion. The results
from their analysis showed that the higher the level of congestion,
the lower the capacity of the assignment model to reduce the
overall uncertainty. Rasouli and Timmermans (2013), when in-
vestigating uncertainty of origin–destination matrix tables using
the Dutch national transport model “Albatross”, found that higher
levels of traffic volumes (at zone level) result in lower levels of
uncertainty for different model output. Thus, it can be said that
there is no consensus on how network congestion affects final
model uncertainty. Nevertheless, as pointed out by Volosin et al.
(2010), it is reasonable to expect that model output variability can
be somehow sensitive to the level of congestion in the network.

The present study investigates uncertainty deriving from input
(i.e. collected data) and parameters (i.e. calibrated parameters) in a
four-stage transport model using Monte Carlo Simulation (MCS)
performed by means of Latin Hypercube Sampling (LHS). The lit-
erature reviews by De Jong et al. (2007) and Rasouli and Tim-
mermans (2012) showed that MCS is also used by Ashley (1980),
Kroes (1996), Zhao and Kockelman (2002), Pradhan and Kockel-
man (2002), Krishnamurthy and Kockelman (2003), De Jong et al.
(2007) and Zhang et al. (2011). The MCS approach has also been
used more recently, e.g. in Rasouli et al. (2012) and Rasouli and
Timmermans (2013). However, none of these studies explored the
uncertainty deriving from the choice of the probability distribu-
tion function to be used in the sampling procedure.

The current study contributes to the stream of the existing
literature primarily by (i) investigating the impact on model un-
certainty deriving from using different probability distributions in
the sampling procedure, (ii) analysing the effect of assignment
procedures leading to different equilibrium conditions, and (iii)
examining uncertainty for different levels of congestion. The fol-
lowing section of this paper introduces the four-stage transport
model used as case-study followed by a section that illustrates the
methodology applied in this study. Results and conclusions are
discussed in the last two sections of the paper.

2. Case-study

The uncertainty analysis was implemented on the four-stage
Næstved model. The four-stage transport model is an analytic
framework that combines trip generation, trip distribution, mode
choice and trip assignment (see, e.g., Ortuzar and Willumsen,
2011). Each model output is used as input for the model that fol-
lows, and the link flows from the trip assignment are used as
feedback for the previous stages of the framework. The model is

solved with an iterative procedure that concludes when the link
flows reach equilibrium, which usually corresponds to the state of
either deterministic User Equilibrium (UE) or Stochastic User
Equilibrium (SUE) (see, e.g., Sheffi, 1985; Ortuzar and Willumsen,
2011). Given the wide use of the four-stage transport model fra-
mework, results from this study are straightforward to interpret
and to compare with other literature and project results.

The Næstved model describes the demand of transport in the
municipality of Næstved, located in the southern part of Zealand.
The municipality has about 80,000 inhabitants and covers an area
of around 681 km2. In the Næstved model, the area of interest is
divided into 106 zones. The road network, graphically described in
Fig. 1, is composed by 315 links classified as “small”, “large” and
“highway” which represent around 92%, 5% and 3% of the number
of links, respectively. The network contains all the roads present in
the modelled area – including residential roads – and it is only
roads in closed (dead end) residential areas that are not coded, as
well as very small rural secondary roads. Basically the modelled
network consists of the city of Næstved, where there is congestion,
and then a large uncongested hinterland. The traffic, modelled
over a single 24-h time interval, is divided into two modes, private
and public transport, with the first absorbing around 85% of the
demand, and into two categories, home/work and business. The
model's final output is based on 3 model's iterations only involving
trip distribution, mode choice and trip assignment stages; in other
words after the first model run the trip generation output is kept
constant and is not influenced by the travel impedance of the
network. In the Næstved model, the four stages are specified as
follows.

2.1. Trip generation

The trip generation stage uses a cross-classification approach to
calculate the number of trips produced and attracted by each zone.
Trip production and trip attraction, respectively, are specified as

P WP W (1)i wp i w iβ β= +

A WPP WPS (2)j wpp j wps jβ β= +

where Pi is the number of trips produced in zone i, Aj is the
number of trips attracted to zone j, WPi and Wi are the number of
workplaces and workers in zone i, WPPj and WPSj are the number
of primary work places and secondary work places in zone j, and
the respective β's are the trip production and attraction rates,
based on national statistics. To balance trips generated and at-
tracted a balancing tool is then applied as follows:
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where z is the balancing factor having values between 0 (pro-
duction adjusted based on attraction) and 1 (attraction adjusted
based on production). For the present study, the balancing tool
was implemented with z having the value of 1.

2.2. Trip distribution

The trip distribution stage is based on a double constrained
gravity model:
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