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Abstract

We have developed a formula for studying the transmission and scattering properties of finite-sized phononic band gap

(PBG) material. We will show that based on the far field approach the transmission coefficients can be obtained by treating PBG

samples as scattering objects. We find that the results agree well with the band structure.
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1. Introduction

The acoustic properties of a locally homogeneous and

isotropic composite material is characterized by a set of

parameters varying in space: mass density r, Lamé

coefficients l, and m. In this paper we focus on the

composite materials, which consist of homogeneous par-

ticles distributed periodically in a host medium and are

characterized by different mass densities and Lamé

coefficients. When identical particles are distributed period-

ically in a host medium, the composite material may be

referred to as a phononic crystal. Recently, the propagation

of elastic or acoustic waves in a phononic crystal has

received much renewed attention [1–7]. It makes the

possibility of the achievement of complete frequency band

gaps that are useful to prohibit specific vibrations in accurate

technologies such as transducers and sonar.

The plane-wave, the finite-difference, and the multiple-

scattering methods are commonly used. To study the

propagation of acoustic waves in phononic band gap

materials (phononic crystal), we consider a two-dimensional

periodic system consisting of finite cylinders of circular

cross-section. The system is periodic in the x–y plane and

within it there is a translational invariance in the direction

(z) parallel to the cylinders. The intersection of the cylinders

with a transverse plane makes a square lattice. We treated

finite PBG samples as scattering objects in open geometry.

The radiation boundary condition was naturally imposed.

We have independently adopted this method to study the

transmission scattering and radiation properties of finite

PBG samples. In the case of transmission, considering far

field approach, a generalized transmission coefficient can be

defined. In terms of the far-field total scattering amplitude,

we can retrieve the dispersion relations and the decay length

inside a gap. We have calculated the transmission coefficient

and interpreted why the results agree well with the band

structure.
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2. Calculation of the transmission coefficient

The displacement vector ~U ð~r ; tÞ in a homogeneous

elastic medium of mass density r and Lamé coefficients l,

m satisfies the following equation:

ðlC2mÞVðV$ ~U ÞKmV!ðV! ~U ÞKrv2t ~U Z 0 (1)

In the case of a harmonic elastic wave with angular

frequency u, we have

~U ð~r ; tÞZRe½uð~rÞexpðKiutÞ�; (2)

and Eq. (1) was reduced to the following time-independent

form

ðlC2mÞVðV$~uÞKmV!ðV!~uÞCru2~u Z 0: (3)

Defining

~u Z~lC ~mC~n; (4)

where

~l ZV4; (5)

~m ZV!ðc~Z Þ; (6)

~n ZV!V!ðj~Z Þ; (7)

where ~Z is the unit vector along the z-axis. f, c and j are the

displacement potential functions of longitudinal and two

transverse waves, respectively. The displacement potential

function of the incident longitudinal waves can be expanded

in terms of the cylindrical Bessel function [8]

4inc Z expðjkzzÞ
XN
KN

ðjÞnJnðklrrÞexpðjnqÞ; (8)

where klrZ ðk2l Kk2z Þ
1=2 is the radial component of the

incident wave vector; Jn is the Bessel function of the first

kind of order n; kz is the z-axis component of the incident

wave vector; kl is the longitudinal wave numbers; r is the

normal distance of the field spot away from z-axis; and q

being the angle of direction.

The displacement potential functions of the longitudinal

and transverse scattered waves can also be expanded:

4sc Z expðjkzzÞ
XN
nZKN

AnHnðklrrÞexpðjnqÞ; (9)

jsc Z expðjkzzÞ
XN
nZKN

BnHnðktrrÞexpðjnqÞ; (10)

csc Z expðjkzzÞ
XN
nZKN

CnHnðktrrÞexpðjnqÞ; (11)

whereHn is Hankel function, using the same method, we can

expand the displacement potential functions of the incident

transverse waves in terms of the cylindrical Bessel

functions. Hence, the displacement potential functions of

the incident transverse waves inside the cylinders are

expanded as:

4in Z expðjkzzÞ
XN
nZKN

f½AnHnðklrrÞCDndn0�

C ½BnJnðktr$rÞCEndn0�gexpðjnqÞ; (12)

jin Z expðjkzzÞ
XN
nZKN

f½AnJnðklr$rÞCDndn0�

C ½BnJnðktr$rÞCEndn0�gexpðjnqÞ; (13)

cin Z expðjkzzÞ
XN
nZKN

½CnJnðktr$rÞCFndn0�expðjnqÞ; (14)

where An–Fn are coefficients and ktrZ ðk2t Kk2z Þ
1=2.

Following, we consider a sample of the two-dimensional

periodic arrays system. The sample was made of d-radius

rods with lattice constant a. The position of the rod with

index j corresponds to ~r jZ ðrj; qjÞ. What are around this rod

are incident waves involving external sources and scattered

waves from other rods. The total field around this rod is uZ
uincCuscatt. The coefficients An–Fn are defined depending on

the boundary conditions.

In the light of the continuity of the displacements, there

are

uinci jrZd Cusci jrZd Z uini jrZd i : ðr; q; zÞ; (15)

Due to the continuity of the stresses, there exists

Pinc
i jrZd CPsc

i jrZd ZPin
i jrZd i : ðr; q; zÞ; (16)

where

Pi Z
X
j

sijnj i; j : ðr; q; zÞ;

and

sij Z 2rc2t uij Crðc2l K2c2l Þdij
X
l

ull i; j; l : ðr; q; zÞ:

where sij are the stress tensor elements and uij are the strain

tensor elements which result from the components of the

displacement vector. The superscripts inc, sc, in denote the

incident, the scattered and the inner field, respectively.

In the far field, when klrðktrÞ[1; uscattð~rÞ/
fsðqÞexpðikrÞ=

ffiffi
r

p
:

The total scattering amplitude of the longitudinal waves

from Eqs. (9) to (11) is

fsðqÞZ
2ffiffiffiffiffiffiffi
pkl

p
Xn
nZKN

jKnAN
n expðjnqÞ

�����
�����: (17)

For acoustic wave transmission, a slit with width w along

the y direction is put between a source and the sample.

Acoustic waves propagate along x direction. In this case, the

incident field can be obtained from the Kirchoff integral
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