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a b s t r a c t

Extreme event attribution characterizes how anthropogenic climate change may have influenced the
probability and magnitude of selected individual extreme weather and climate events. Attribution
statements often involve quantification of the fraction of attributable risk (FAR) or the risk ratio (RR) and
associated confidence intervals. Many such analyses use climate model output to characterize extreme
event behavior with and without anthropogenic influence. However, such climate models may have
biases in their representation of extreme events. To account for discrepancies in the probabilities of
extreme events between observational datasets and model datasets, we demonstrate an appropriate
rescaling of the model output based on the quantiles of the datasets to estimate an adjusted risk ratio.
Our methodology accounts for various components of uncertainty in estimation of the risk ratio. In
particular, we present an approach to construct a one-sided confidence interval on the lower bound of
the risk ratio when the estimated risk ratio is infinity. We demonstrate the methodology using the
summer 2011 central US heatwave and output from the Community Earth System Model. In this ex-
ample, we find that the lower bound of the risk ratio is relatively insensitive to the magnitude and
probability of the actual event.
& 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The summer of 2011 was extremely hot in Texas and Oklahoma,
producing a record of 30.26 °C for the average June–July–August
(JJA) temperature (3.24 °C above the 1961–1990 mean) as mea-
sured in the CRU observational dataset (CRU TS 3.21, Harris et al.,
2014). In a previous study of the 2011 Texas heat wave by Hoerling
et al. (2013), a major factor contributing to the magnitude of 2011
heat wave was the severe drought over Texas resulting from the La
Niña phase of the ocean state. However, the analysis found a
substantial anthropogenic increase in the chance of an event of
this magnitude. As in most mid-latitude land regions, the prob-
ability of extreme summer heat in this region has increased due to
human-induced climate change (Min et al., 2013). However, as
Stone et al. (2013) note, depending on spatial extent of the region
analyzed, observed summer warming is low in Texas in 2011 and
traceable to the so-called “warming hole” (Meehl et al., 2012).

Extreme event attribution analyses attempt to characterize
whether and how the probability of an extreme event has changed
because of external forcing, usually anthropogenic, of the climate
system. As with traditional detection and attribution of trends in
climate variables (Bindoff et al., 2013), climate models must play an
important role in the methodology due to the absence of extremely
long observational records. The fraction of attributable risk (FAR) or
the risk ratio (RR) are commonly-used measures that quantify this
potential human influence (Palmer, 1999; Allen, 2003; Stott et al.,
2004; Jaeger et al., 2008; Pall et al., 2011; Wolski et al., 2014). Fol-
lowing the notation used in Stott et al. (2004), let pA be the prob-
ability in a simulation using all external (anthropogenic plus nat-
ural) forcings of an event of similar magnitude, location and season
to the actual event and pC be the probability of such an event under
natural forcings. The FAR is defined as = −FAR p p1 /C A while the RR
is defined as =RR p p/A C , with each quantity a simple mathematical
transformation of the other. We note that the commonly used term
“risk ratio” is more precisely a “probability ratio” (Fischer and
Knutti, 2015) but we will stick to the RR nomenclature in this study
—in part because RR is the well-established terminology.

In the seminal study of the 2003 European heat wave by Stott
et al. (2004), their climate model did remarkably well in
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simulating both European mean summer temperature and its in-
terannual standard deviation. However, this is not generally the
case for the entirety of available climate model outputs nor for the
wide range of extreme events of current interest (Peterson et al.,
2012, 2013; Herring et al., 2014). Hence there is a need to correct
model output, particularly in the tail of its distribution, to more
realistically estimate both pA and pC. Quantile-based mapping is
often used to reduce such climate model biases in statistical
downscaling studies of future climate change projections. Such
methods match quantiles of climate model outputs to observed
data for monthly GCM temperature and precipitation (Wood et al.,
2004). For instance, quantile-based corrections to the transfer
function between the coarse mesh of the global models and the
finer downscaled mesh have been obtained by using cumulative
distribution functions (CDFs) to match percentiles between the
model outputs and observations over a specified base period
(Maurer and Hidalgo, 2008). Li et al. (2010) proposed an adjust-
ment of the traditional quantile matching method (Panofsky and
Brier, 1968) to account for time-dependent changes in the dis-
tribution of the future climate and suggested that the quantile-
matching method is a simple and straightforward method for re-
ducing the scale differences between simulations and observa-
tions, for the tails of the distribution as well. The quantile mapping
approach of Li et al. (2010) has been previously used to empirically
estimate annual and decadal maximum daily precipitation in an
attribution study of an early season blizzard in western South
Dakota (Edwards et al., 2014).

This paper is concerned with developing a formal statistical
methodology using extreme value analysis combined with quan-
tile mapping to adjust for model biases in event attribution ana-
lyses. We apply the methodology to the 2011 central US heatwave
as a case study, using an ensemble of climate model simulations.
In Section 2, we describe the observed and simulated data for the
central US heatwave analysis. Section 3 presents our statistical
methodology, describing the use of extreme value methods com-
bined with the quantile bias correction to estimate the risk ratio.
We describe several approaches for estimating uncertainty in the
risk ratio, focusing on the use of a likelihood ratio-based con-
fidence interval that provides a one-sided interval even when the
estimated risk ratio is infinity. In Section 4 we present results from
using the methodology for event attribution for the central US
heatwave, showing strong evidence of anthropogenic influence.

2. Case study: summer 2011 central USA heatwave

For a representative case study of extreme temperature attri-
bution, we define a central United States region bordered by 90°W
to 105°W in longitude and 25°N to 45°N in latitude, chosen to
encompass the Texas and Oklahoma heatwave that occurred in
summer 2011 (see Fig. 1). For this region, we calculated summer
(June, July, August [JJA]) average temperature anomalies for the
time period 1901–2012 by averaging daily maximum temperatures
for grid cells falling within the study region. Anomalies are com-
puted using 1961–1990 as the reference period.

The observational data in this study are obtained from the
gridded data product (CRU TS 3.21, Climatic Research Unit Time
Series) available on a 0.5°�0.5° grid provided by the Climatic
Research Unit (Harris et al., 2014). This dataset provides monthly
average daily maximum surface air temperature anomalies. Simi-
larly, monthly averaged daily maximum surface air temperatures
were obtained from the CMIP5 database through the Earth System
Grid Federation (ESGF) archive. For both the observations and
model output, spatial averages over the cells covering the land
surface of the region were calculated, resulting in simple 1-di-
mensional time series. In this study, we use a single climate model,

the fourth version of the Community Climate System Model
(CCSM4) with a resolution of 1.25°�0.94° grid. To more fully ex-
plore the structural uncertainty in event attribution statements,
additional models would need to be included in the analysis.
While that topic is outside the scope of this paper, our metho-
dology is also relevant for analyses that use multiple models that
will each have their own biases.

The CCSM4 ensemble consists of multiple simulations, each
initialized from different times of a control run; we treat the en-
semble members as independent realizations of the model's pos-
sible climate state. For the actual scenario with all forcings in-
cluded, we use an ensemble of five members, constructed by
concatenating the period 1901–2005 from the CMIP5 “historical”
forcings experiment and the period 2006–2012 from the matching
RCP8.5 emissions scenario experiment. As a representation of a
world without human interference on the climate system, we
construct a counterfactual scenario by producing an ensemble of
12 100-year segments drawn from the preindustrial control run. In
this scenario, greenhouse gases, aerosols and stratospheric ozone
concentrations are set at pre-industrial levels, but other external
natural forcings such as solar variability and volcanoes are not
included. We use this counterfactual scenario as a proxy for the
natural climate system without any external forcing factors.

An important consideration in event attribution analyses is
whether the climate model(s) reasonably represent the magni-
tudes and frequencies of the event of interest (Christidis et al.,
2013). Fig. 2 shows that summer temperatures vary more in the
CCSM4 output than in the observations. The record observed ex-
treme value in our central US region in 2011 was 2.467 °C above
the 1961–1990 average (represented by the large black dot); even
this extreme is somewhat lower than the observed values over just
the states of Texas and Oklahoma. However, this value is not
particularly rare in either model scenario dataset. Due to this scale
mismatch in temperature variability, the climate model incorrectly
estimates the probabilities of extreme events of this magnitude in
both scenarios. In light of this model bias, a quantile mapping
procedure to scale the extreme values of either the model or the
observations to the other is warranted to more consistently relate
the model's risk ratio to the real world. More precisely, we define
the event according to observations, even in the presence of ob-
servational error, and calibrate the model to the observations with
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Fig. 1. Central United States region, 90°W to 105°W in longitude and 25°N to 45°N
in latitude (bold rectangular area), covering the states of Texas and Oklahoma.
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